Abstract:
A fuel cell system includes: a cell pack including an anode layer, a cathode layer, and an electrolyte; a fuel tank separated from the cell pack, and having a hole; a fuel mixture unit connected to the cell pack; a fuel storage medium included in the fuel tank, and a part of which is exposed through the hole; and a fuel supplying path having a first end connected to the fuel mixture unit, and a second end connected to the fuel storage medium only when the fuel cell system operates. A mobile communication device includes the fuel cell system.
Abstract:
A fuel cell system includes: a cell pack including an anode layer, a cathode layer, and an electrolyte; a fuel tank separated from the cell pack, and having a hole; a fuel mixture unit connected to the cell pack; a fuel storage medium included in the fuel tank, and a part of which is exposed through the hole; and a fuel supplying path having a first end connected to the fuel mixture unit, and a second end connected to the fuel storage medium only when the fuel cell system operates. A mobile communication device includes the fuel cell system.
Abstract:
A mold and method for gravity casting may integrally cast a turbine housing having a twin scroll unit and a bypass unit and an exhaust manifold having a plurality of exhaust runner units. A turbine housing-side riser may be formed based on the end portion of the twin scroll unit within a first mold and a second mold in the state where the cavity of the turbine housing is formed so that the end portion of the twin scroll unit which is the outlet of the turbine housing is upward disposed.
Abstract:
A fuel cell system having a fuel pressurizing system. The fuel cell system includes: a cartridge comprising a fuel storage pack; a main body; and a pressurizing unit disposed in the main body to pressurize the fuel storage pack when the cartridge is mated to the main body. The cartridge further includes a pressurizing plate to transmit pressure received from the pressurizing unit to the fuel storage pack when the cartridge is mated to the main body and to preventing the fuel storage pack from being pressurized when the cartridge is separated from the main body. The main body can include a case on which the fuel storage pack and the pressurizing plate are received.
Abstract:
A monopolar membrane-electrode assembly, including an electrolyte membrane having a plurality of cell regions and at least one opening associated with each cell region, a plurality of anode current collecting bodies and a plurality of cathode current collecting bodies respectively formed at the cell regions on both surfaces of the electrolyte membrane, each current collecting body including a current collector collecting the currents on the cell regions, and a conductor connected to a side of the current collector, respective ends of the conductors of corresponding anode and cathode current collecting bodies being connected through the corresponding openings in series, and a plurality of anodes and a plurality of cathodes respectively formed on the anode current collecting bodies and the cathode current collecting bodies.
Abstract:
A water recovery system of a direct liquid feed fuel cell and a direct liquid feed fuel cell having the water recovery system. The water recovery system in which water produced at a cathode electrode of a membrane electrode assembly (MEA) is recovered to supply to an anode electrode, the water recovery system includes: a first member located on the cathode electrode and a first supporting plate that supports the first member; and a second member located on the anode electrode and a second supporting plate that supports the second member, wherein the first member and the second member are connected to each other through a slit formed in an electrolyte membrane of the MEA. The direct liquid feed fuel cell having the water recovery system can be used, for example, in a direct methanol fuel cell (DMFC).
Abstract:
A fuel cell system includes a power unit that generates power using a fuel; a fuel storage unit that stores the fuel; a fuel supply device that conveys the fuel from the fuel storage unit to the power unit; and a control unit that controls the supply of the fuel and the generation of power. The fuel supply device includes a fuel supply control device that controls the supply of fuel according to a signal generated by the control unit. The control unit includes a fuel control unit that generates the signal according to the information of the fuel storage unit and the state information of the power unit.
Abstract:
A fuel cell stack induces smooth current collection and liquid or gas flow without using a heavy bipolar plate. The fuel cell stack includes: a membrane and electrode assembly (MEA) in which an electrolyte membrane is disposed between a cathode electrode and an anode electrode; a current collector disposed in the MEA to form an electrical path with an adjacent MEA; and a non-conductive separation plate disposed between the MEA and the adjacent MEA, the non-conductive separation plate forming flow channels to supply a liquid or gas to the cathode electrode and the anode electrode. A fuel cell stack structure having the above structure is simple and lightweight as the MEA includes a thin and lightweight non-conductive polymer separation plate and a current collector to connect adjacent MEAs.
Abstract:
A monopolar membrane electrode assembly (MEA) for a fuel cell, for example, includes: an electrolyte membrane; anode and cathode electrodes formed on opposite surfaces of the electrolyte membrane, respectively; current collecting bodies that form electrical paths of electricity generated from an electricity generation reaction between the anode and cathode electrodes and the electrolyte membrane; and sensing elements to measure changes in operation state conditions during electricity generation and electrical connection. Since temperature and fuel concentration in the monopolar MEA having the above structure are detected on a real time basis, appropriate action can be taken whenever an abnormal operation thereof is detected.
Abstract:
A monopolar membrane-electrode assembly includes an electrolyte membrane with a plurality of cell regions, an anode supporting body and a cathode supporting body on both sides of the electrolyte membrane, respectively having a plurality of apertures corresponding to the cell regions, a plurality of anode and cathode current collectors, each including a current collecting portion to correspond to each aperture of the respective anode or cathode supporting body to collect current, a conducting portion connected to a side of the current collecting portion, and a connecting line that connects the conducting portion to an outside terminal, a plurality of anode and cathode electrodes respectively formed on the and the cathode current collecting portions, and a circuit unit connected to the connecting lines of the anode current collectors and the cathode current collectors, wherein the cells are connected in series or parallel, or electrically separated through the circuit unit.