Abstract:
This invention provides a method for commissioning and upgrading an optical ring network using its internal amplifiers as Automatic Spontaneous Emission sources of light that are used in making measurements. A modular segmented approach is adopted and the network is commissioned segment by segment. A flexible method is used for upgrading a commissioned network by adding or deleting a node or changing the internal configuration of a node. The method uses techniques for the correction of the Optical Signal to Noise Ratio induced error as well as the Spectral Filtering Error during the loss computation required for adjusting the gains of the amplifiers at each network node to an appropriate value. Since the method does not require an external laser source that needs to be moved manually from node to node it greatly reduces the commissioning time. Since it uses only the components of the network itself and does not deploy any additional device it also leads to a significant saving in cost.
Abstract:
A multi-stage method and apparatus for determining a faulty component location along an optical path through an optical fiber in an optical network are disclosed. A total power of the optical fiber, and a total wavelength power as a sum of powers of the individual wavelengths at a plurality of local detection points are measured and compared at the local detection points, followed by determining whether or not a faulty detection point exists along the optical path. If a fault is identified, the method provides a multi-stage fault detection procedure, including measuring a total wavelength power loss between a local detection point and an adjacent detection point, between the local detection point and multiple non-adjacent detection points, and a correlation of the measured total wavelength power losses between the various detection points. A corresponding apparatus for determining the faulty component location in the optical network is also provided.
Abstract:
Optical interconnects and methods for wavelength management are provided to interconnect optical rings while overcoming color-blocking and allowing for wavelength re-use within optical rings. The optical inter-connects having a wavelength selective element such as a reconfigurable add/drop demultiplexer (ROADM) and a band-modulo demultiplexer having a free spectral range (FSR) combined with a pool of wavelength conversion resources. More flexible interconnect systems can use a photonic cross-connect (PXC) to allow sharing of a pool of wavelength conversion resources among several optical rings.
Abstract:
The majority of applications for head mounted display (HMD) users, irrespective of whether they are for short-term, long-term, low vision, augmented reality, etc. yield a conflicting set of tradeoffs between user comfort and minimal fatigue and strain during use, ease of attachment, minimizing intrusiveness and aesthetics which must be concurrently balanced with and are often in conflict with providing an optical vision system that provides the user with a wide field of view and high image resolution whilst also offering a large exit pupil for eye placement with sufficient eye clearance. Further, individual users' needs vary as do their needs with the general task at-hand, visual focus, and various regions-of-interest within their field of view. To address these issues, it is necessary to provide a high performance optical system, eyepiece design, and system features which overcome these limitations.
Abstract:
Identification of optical channels in wavelength division multiplex (WDM) optical networks may be confounded by unwanted noise tones interfering with pilot/dither tones used for identifying optical channels. The invention describes a method of selecting pilot/dither tones that are selectively restricted to avoid allocating dither/pilot tone frequencies that appear as noise tones along the path of an optical channel in the optical network.
Abstract:
Identification of optical channels in wavelength division multiplex (WDM) optical networks may be confounded by unwanted noise tones interfering with pilot/dither tones used for identifying optical channels. The invention describes a method of selecting pilot/dither tones that are selectively restricted to avoid allocating dither/pilot tone frequencies that appear as noise tones along the path of an optical channel in the optical network.
Abstract:
A failure protection between interconnected adjacent Resilient Packet Rings (RPRs) in a multiple RPR network is provided. Two paths, a regular message path and a protection path, are provided between two adjacent RPRs. The regular path is used for routing inter-ring messages when no failure has occurred on the path. Messages are rerouted through the protection path when a failure occurs on the regular path. Each of these paths has two RPR interface nodes (one for each RPR) that are connected to an interconnection device (a layer 2 bridge or a layer-3 router) through interconnection links. Procedures for detecting failures and generating notifications for message rerouting and fault reports are executed at the interconnection devices. The procedures use periodic keep alive messages for diagnosing network segment and interconnection device failures. The fault detection and message rerouting are accomplished in less than 50 ms.
Abstract:
The majority of applications for head mounted display (HMD) users, irrespective of whether they are for short-term, long-term, low vision, augmented reality, etc. yield a conflicting set of tradeoffs between user comfort and minimal fatigue and strain during use, ease of attachment, minimizing intrusiveness and aesthetics which must be concurrently balanced with and are often in conflict with providing an optical vision system that provides the user with a wide field of view and high image resolution whilst also offering a large exit pupil for eye placement with sufficient eye clearance. Further, individual users' needs vary as do their needs with the general task at-hand, visual focus, and various regions-of-interest within their field of view. To address these issues, it is necessary to provide a high performance optical system, eyepiece design, and system features which overcome these limitations.
Abstract:
A method and apparatus for distributed measurement of chromatic dispersion in an optical network is disclosed. The network comprises optical switching nodes interconnected by optical links. An optical link may comprise multiple spans, each span ending in a transport module which comprises signal-processing components. At least one optical switching node has a probing signal generator transmitting an optical probing signal along a selected path in the network. Probing-signal detectors placed at selected transport modules determine chromatic-dispersion values and send results to a processing unit which determines appropriate placement of compensators or appropriate adjustments of compensators placed along the path. A preferred probing signal has the form of wavelength modulated optical carrier which is further intensity modulated by a periodic, preferably sinusoidal, probing tone. Variation in the phase-shift of the probing tone corresponding to variation of the wavelength of the optical probing signal determines chromatic-dispersion characteristics for different spans of the path.
Abstract:
A method and apparatus for distributed measurement of chromatic dispersion in an optical network is disclosed. The network comprises optical switching nodes interconnected by optical links. An optical link may comprise multiple spans, each span ending in a transport module which comprises signal-processing components. At least one optical switching node has a probing signal generator transmitting an optical probing signal along a selected path in the network. Probing-signal detectors placed at selected transport modules determine chromatic-dispersion values and send results to a processing unit which determines appropriate placement of compensators or appropriate adjustments of compensators placed along the path. A preferred probing signal has the form of wavelength modulated optical carrier which is further intensity modulated by a periodic, preferably sinusoidal, probing tone. Variation in the phase-shift of the probing tone corresponding to variation of the wavelength of the optical probing signal determines chromatic-dispersion characteristics for different spans of the path.