摘要:
A fabrication technique is described for producing lighter weight and improved wear and erosion resistant gun barrels. The barrels are produced in an unconventional manner from the inside bore to the outside diameter of the barrel and combine a refractory metal, metal alloy, or ceramic composite inner liner with a metal matrix composite (MMC) or titanium or other suitable high strength, lightweight metal or metal alloy outer shell. A unique aspect of the invention is that there is a compositional gradation from the liner at the inside bore to the overwrap which extends to the outside diameter of the barrel. A process is also described to produce barrels with a refractory metal liner with improved wear and erosion resistance by depositing the refractory metal on the ID of a pre-fabricated barrel.
摘要:
Golf club structures, including club heads and shafts, composed of composites comprised of a matrix of metal, such as an aluminum alloy, or a plastic material and a fiber such as graphite or a ceramic, which may be whiskerized, and which may also be selectively weighted as in the toe and heel of a club head, with heavy particles such as tungsten metal. The club structure may also be surface hardened by applying a coating of fullerenes to a metal club structure and heat treating it to produce a hard coating of metal carbide, preferably by coating a titanium golf club structure with fullerenes and heat treating the coated structure to produce a titanium carbide surface.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
摘要:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.