Abstract:
The present application discloses a ceramic preform, a method of making a ceramic preform and a metal matrix composite comprising a ceramic preform. In one exemplary embodiment, the ceramic preform comprises a ceramic compound compressed into the shape of a cylinder by rotational compression molding. The cylinder has an inner surface and an outer surface. A first liner may be attached to the inner surface of the cylinder and a second liner may attached to the outer surface of the cylinder. The metal matrix composite of the present application may be formed as a brake drum or a brake disc.
Abstract:
Provided are a graphite material, which has excellent bonding characteristics to semiconductor and efficiently dissipates heat generated from the semiconductor, and a method for manufacturing such material. The graphite material is provided by adding at least two kinds of elements selected from among silicon, zirconium, calcium, titanium, chromium, manganese, iron, cobalt, nickel, calcium, yttrium, niobium, molybdenum, technetium, ruthenium and compounds containing such elements, and by performing heat treatment. The graphite material is characterized in having a thickness of the 112 face of the graphite crystal of 15 nm or more by X-ray diffraction, and an average heat conductivity of 250 W/(m·K) or more in the three directions of the X, Y and Z axes.
Abstract:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
Abstract:
A heat spreader including a plurality of carbonaceous particles present in an amount of at least about 50% by volume of the heat spreader. A non-carbonaceous infiltrant is also present in an amount of at least about 5% by volume of the heat spreader, the non-carbonaceous infiltrant including an element selected from the group consisting of Cu, Al and Ag. In another aspect, the carbonaceous particles may be sintered or fused directly to one another. The heat spreader can be incorporated into a cooling unit for transferring heat away from a heat source, which includes a heat sink with the heat spreader disposed in thermal communication with both the heat sink and the heat source.
Abstract:
Discontinuous diamond particulate containing metal matrix composites of high thermal conductivity and methods for producing these composites are provided. The manufacturing method includes producing a thin reaction formed and diffusion bonded functionally graded interactive SiC surface layer on diamond particles. The interactive surface converted SiC coated diamond particles are then disposed into a mold and between the particles and permitted to rapidly solidify under pressure. The surface conversion interactive SiC coating on the diamond particles achieves minimal interface thermal resistance with the metal matrix which translates into good mechanical strength and stiffness of the composites and facilitates near theoretical thermal conductivity levels to be attained in the composite. Secondary working of the diamond metal composite can be performed for producing thin sheet product.
Abstract:
A metal matrix composite and method wherein a reinforcement preform is made by partially sintering ceramic particles and a metal matrix material is used into the preform. In one example, the resulting isotropic metal matrix composite has an ultimate tensile strength of at least 80 ksi in all directions, a high temperature strength retention of at least 85% up to 500null F., and a high temperature stiffness retention of at least 95% at temperatures up to 500null F. Preferably, the preform has an average pore size of 1-5 microns, an average interconnected porosity 35-45 vol. %, a 100% open porosity, and a flexure strength of greater than 7 ksi.
Abstract:
A porous metal body having a foam structure of 500 nullm or less in average pore diameter, wherein the skeleton is composed of an alloy primarily including Fe and Cr, and Cr carbide or FeCr carbide is uniformly dispersed in the texture. The metal porous body is produced by preparing a slurry primarily containing an Fe oxide powder having an average particle diameter of 5 nullm or less, at least one powder selected from metallic Cr, Cr alloys, and Cr oxides, a thermosetting resin, and a diluent, applying a coating of this slurry to a resin core body having a foam structure, performing drying, and thereafter, performing firing in a non-oxidizing atmosphere so as to produce a metal porous body having the aforementioned skeleton structure.
Abstract:
A hard composite composition comprises a binder; and a polymodal blend of matrix powder. In an embodiment, the polymodal blend of matrix powder has at least one local maxima at a particle size of 30 μm or less, at least one local maxima at a particle size of 200 μm or more, and at least one local minima between a particle size of about 30 μm to about 200 μm that has a value that is less than the local maxima at a particle size of 30 μm or less.
Abstract:
Provided are a graphite material, which has excellent bonding characteristics to semiconductor and efficiently dissipates heat generated from the semiconductor, and a method for manufacturing such material. The graphite material is provided by adding at least two kinds of elements selected from among silicon, zirconium, calcium, titanium, chromium, manganese, iron, cobalt, nickel, calcium, yttrium, niobium, molybdenum, technetium, ruthenium and compounds containing such elements, and by performing heat treatment. The graphite material is characterized in having a thickness of the 112 face of the graphite crystal of 15 nm or more by X-ray diffraction, and an average heat conductivity of 250 W/(m·K) or more in the three directions of the X, Y and Z axes.
Abstract:
The present application discloses a ceramic preform, a method of making a ceramic preform and a metal matrix composite comprising a ceramic preform. In one exemplary embodiment, the ceramic preform comprises a ceramic compound compressed into the shape of a cylinder by rotational compression molding. The cylinder has an inner surface and an outer surface. A first liner may be attached to the inner surface of the cylinder and a second liner may attached to the outer surface of the cylinder. The metal matrix composite of the present application may be formed as a brake drum or a brake disc.