Abstract:
A process for the reduction of a phenylacetylene contaminant in the presence of a styrene monomer. A styrene monomer stream containing a minor amount of phenylacetylene is supplied to a hydrogenation reactor. A hydrogenation gas comprising hydrogen is also supplied to the hydrogenation reactor. The styrene monomer stream and the hydrogen are bought into contact with a catalyst bed containing a catalyst comprising a reduced copper compound on a theta alumina support. The hydrogenation reactor is operated at a temperature of at least 60° C. and a pressure of at least 30 psig to hydrogenate phenylacetylene to styrene. A product is recovered from the hydrogenation reactor having a substantially reduced phenylacetylene content and an enhanced styrene content. The hydrogenation gas comprises a mixture of nitrogen and hydrogen.
Abstract:
Dehydrogenation of a reactor system of one or more vertically oriented flow reactors equipped with a system for introducing a catalyst extender into the inlet of the reactor. A vertically oriented radial flow reactor comprises inner and outer reactor tubes having perforated wall members extending longitudily of the reactor and defining an annulus containing a dehydrogenation catalyst. A supply line to the reactor is equipped with a rotation vane. An injection nozzle comprising a coaxial flow tube extends into the supply line downstream of the vane. The coaxial flow tube has an interior chamber and an annular chamber surrounding the interior chamber and extending into the supply line along with the interior chamber. The interior chamber is connected to a catalyst extender source and the annular chamber is connected to a source of a carrier gas which is effective to disperse the extender within feedstock flowing into the reactor.
Abstract:
Alkylation systems and methods of minimizing alkylation catalyst regeneration are discussed herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a first preliminary alkylation catalyst disposed therein to form a first output stream. The first preliminary alkylation catalyst generally includes a Y zeolite. The systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
Abstract:
Disclosed is the observation that 7-aryl-quinone methides and 4-tert-butylcatechol, when used in combination in a vinyl aromatic monomer to inhibit polymerization, do not inhibit polymerization to the same extent as each would if used separately. Stated another way, a phenomenon has been observed that when these two compounds are used together, they can, to a large extent, render each other unable to inhibit polymerization in a vinyl aromatic monomer. Also disclosed are methods of preventing adverse results of this interaction when undesired and a method of using this interaction to prepare a reactive vinyl aromatic monomer having a concentration of 4-tert-butylcatechol that would otherwise inhibit polymerization. The invention is disclosed to be useful with the production and storage of any vinyl aromatic monomer and is disclosed to be particularly useful with the production and storage of styrene monomer.
Abstract:
A load leveler is disclosed that is used with a nesting type cart having a basket with a tapered front to provide a level surface for safely carrying loads that are longer than the length of the cart basket and must sit on top of the cart basket in order to be transported. The load leveler comprises spaced vertical pieces on top of the larger rear of the tapered basket to restrain a long load from sliding to the side and off the cart basket, and also comprises a pivoting member that is attached to the top of the front of the tapered basket. The pivoting member provides a raised surface for supporting a long load in a horizontal orientation with the top rear of the basket, and also has vertical members for helping restraining a long load from sliding to the side and off the cart. The pivoting member is lowered and rests against the inside of the front wall of the basket to permit nesting of the carts in a known manner. When a cart does not have a tapered, nesting basket and its top is level, the spaced vertical members on the top rear of the basket are repeated on the top of the front of the basket to help restrain a long load from sliding to the side and off the cart.
Abstract:
A process for the reduction of a phenylacetylene contaminant in the presence of a styrene monomer. A styrene monomer stream containing a minor amount of phenylacetylene is supplied to a hydrogenation reactor. A hydrogenation gas comprising hydrogen is also supplied to the hydrogenation reactor. The styrene monomer stream and the hydrogen are brought into contact with a catalyst bed containing a catalyst comprising a reduced copper compound on a theta alumina support. The hydrogenation reactor is operated at a temperature of at least 60° C. and a pressure of at least 30 psig to hydrogenate phenylacetylene to styrene. A product is recovered from the hydrogenation reactor having a substantially reduced phenylacetylene content and an enhanced styrene content. The hydrogenation gas comprises a mixture of nitrogen and hydrogen.
Abstract:
Alkylation systems and methods of minimizing alkylation catalyst regeneration are discussed herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a first preliminary alkylation catalyst disposed therein to form a first output stream. The first preliminary alkylation catalyst generally includes a Y zeolite. The systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
Abstract:
Alkylation systems and methods of forming alkyl aromatic compounds are described herein. The alkylation systems generally include a reaction vessel including a first reaction zone adapted to receive an input stream having a first aromatic compound, wherein the first reaction zone includes an alkylation catalyst. The reaction vessel further includes a second reaction zone in communication with the first reaction zone, wherein the second reaction zone is adapted to receive an alkylating agent and pass the alkylating agent therethrough to the first reaction zone to contact the input stream in the presence of the alkylation catalyst to form an output stream including a second aromatic compound.
Abstract:
A nonblocking coated elastomeric film comprises an elastomeric polymer film layer and a nonblocking solvent-based coating layer. The coating layer comprises a nonblocking coating component. The coating layer may be applied to one or both surfaces of the elastomeric polymer film layer.
Abstract:
Dehydrogenation of a reactor system of one or more vertically oriented flow reactors equipped with a system for introducing a catalyst extender into the inlet of the reactor. A vertically oriented radial flow reactor comprises inner and outer reactor tubes having perforated wall members extending longitudily of the reactor and defining an annulus containing a dehydrogenation catalyst. A supply line to the reactor is equipped with a rotation vane. An injection nozzle comprising a coaxial flow tube extends into the supply line downstream of the vane. The coaxial flow tube has an interior chamber and an annular chamber surrounding the interior chamber and extending into the supply line along with the interior chamber. The interior chamber is connected to a catalyst extender source and the annular chamber is connected to a source of a carrier gas which is effective to disperse the extender within feedstock flowing into the reactor.