摘要:
An artifact signal correction system may include a mixing component to generate a waveform corresponding to an artifact such as an error tone, whereupon that waveform may be combined with the input waveform to substantially eliminate the artifact. In preferred embodiments, a method and apparatus for reducing spurious tones in systems of mismatched interleaved digitizers due to interleave error is provided. In various embodiments the method may include reversing the frequency content of an input signal, converting the reversed signal into interleave artifact content, delaying the input signal along a parallel path, and then subtracting the interleave content from the delayed input signal.
摘要:
A method is provided for de-embedding measurements from a given network containing mixtures of devices with known and unknown S-parameters given a description of the network and the known S-parameters of the overall system.
摘要:
A method and apparatus are provided for calculating s-parameters of a device under test from step waveforms acquired by a time domain network analyzer.
摘要:
A method and apparatus for generating one or more transfer functions for converting waveforms. The method comprises the steps of determining a system description, representative of a circuit, comprising a plurality of system components, each system component comprising at least one component characteristic, the system description further comprising at least one measurement node and at least one output node, each of the at least one measurement nodes representative of a waveform digitizing location in the circuit. One or more transfer functions are determined for converting a waveform from one or more of the at least one measurement nodes to a waveform at one or more of the at least one output nodes. The generated transfer functions are then stored in a computer readable medium.
摘要:
A digital signal processing system capable of compensating for frequency response variations and generating a response characteristic that complies with a provided specification. The system automatically generates digital filters to provide this compensation with almost any form of channel frequency response information and with user defined specifications. The capability of this system to trade-off noise performance, pulse response, and frequency response flatness in order to provide an optimized response is demonstrated. The system also provides feedback to the user on the final response characteristics.
摘要:
A method is provided for de-embedding fixtures and/or probes from measurements of devices where probes and fixtures are connected between the ports of a network analysis instrument and a device-under-test.
摘要:
A method is provided for de-embedding measurements from a given network containing mixtures of devices with known and unknown S-parameters given a description of the network and the known S-parameters of the overall system.
摘要:
A method for improving bandwidth of an oscilloscope involves, in preferred embodiments, the use of frequency up-conversion and down-conversion techniques. In an illustrative embodiment the technique involves separating an input signal into a high frequency content and a low frequency content, down-converting the high frequency content in the analog domain so that it may be processed by the oscilloscope's analog front end, digitizing the low frequency content and the down-converted high frequency content, and forming a digital representation of the received analog signal from the digitized low frequency content and high frequency content.
摘要:
An apparatus and method for processing a data signal is provided. An acquisition unit of a test instrument acquires a data signal for a predetermined time. The data signal is stored in a memory of the test instrument and a clock recovery unit recovers a clock signal from the stored data signal. The stored data signal is sliced by a processor into a plurality of data segments of a predetermined length in accordance with the recovered clock signal.
摘要:
A method and apparatus for digitizing a signal. The method comprises the steps of receiving an input analog signal, splitting the received input analog signal into a plurality of signals and frequency converting at least one of the signals in accordance with a predetermined periodic function having a predetermined frequency. The signals are then digitized and combined mathematically to form a single output stream that is a substantially correct representation of the original input analog signal.