摘要:
Methods and systems are disclosed for transforming a signal using a continuous wavelet transform based at least in part on a truncated, mean-adjusted wavelet. A wavelet may be truncated to a finite support to generate a truncated wavelet. The real part of the truncated wavelet may be forced to have a zero mean to generate a truncated, mean-adjusted wavelet. The signal may be transformed using a continuous wavelet transform based at least in part on the truncated mean-adjusted wavelet. Information may be derived about the signal from the transformed signal.
摘要:
The present disclosure relates to monitoring a characteristic physiological parameter of a patient during a suitable time period that either precedes or follows a triggering event, such as a clinician/patient interaction, that may negatively impact the physiological parameter. In some embodiments, physiological parameter values falling between one or more pre-set thresholds may be used to derive the characteristic physiological parameter. In some embodiments, tracking the physiological parameter may provide additional information about the patient's status. In some embodiments, confidence measures may be associated with, or may be used to analyze features of the patient signal to derive information about, the characteristic physiological parameter. The patient signal used to derive a patient's physiological parameter may be of an oscillatory nature or may include oscillatory features that may be analyzed to derive a characteristic blood pressure or a characteristic respiration rate.
摘要:
Methods and systems are provided for deriving and analyzing shape metrics, including skewness metrics, from physiological signals and their derivatives to determine measurement quality, patient status and operating conditions of a physiological measurement device. Such determinations may be used for any number of functions, including indicating to a patient or care provider that the measurement quality is low or unacceptable, alerting a patient or care provider to a change in patient status, triggering or delaying a recalibration of a monitoring device, and adjusting the operating parameters of a monitoring system.
摘要:
Systems and methods are disclosed herein for measuring the electromechanical delay of the heart of a patient. An electrocardiogram (EKG) signal may be used to detect heart electrical activity. Photoplethysmograph (PPG) signals may be used to detect heart mechanical activity. The electromechanical delay may be calculated based at least in part on the timing of an EKG signal and at least two PPG signals.
摘要:
The present disclosure relates to systems and methods for monitoring pain management using measurements of physiological parameters based on a PPG signal. A reference physiological parameter may be compared against a later measurement to identify a change in condition that may indicate a pain management problem.
摘要:
Methods and systems are provided for deriving and analyzing shape metrics, including skewness metrics, from physiological signals and their derivatives to determine measurement quality, patient status and operating conditions of a physiological measurement device. Such determinations may be used for any number of functions, including indicating to a patient or care provider that the measurement quality is low or unacceptable, alerting a patient or care provider to a change in patient status, triggering or delaying a recalibration of a monitoring device, and adjusting the operating parameters of a monitoring system.
摘要:
Systems and methods are provided for passive photoplethysmograph sensing. A patient monitoring system may provide active sensing, passive sensing, or both. In some cases, a patient monitor may determine whether to provide passive or active sensing. Passive photoplethysmograph sensing may be used to determine physiological information such as pulse rate, respiration rate, or other information. Passive photoplethysmograph sensing may allow for reduced power consumption relative to active sensing.
摘要:
Systems and methods are disclosed for producing audible indicators that are based on a subject's measured blood pressure. Audible properties of the indicators are processed to represent blood pressure. For example, the duration or volume of the audible indicators may be varied based on the values of the subject's blood pressure. The audible indicators may further be varied based on the subject's blood pressure's deviation from a normal blood pressure and/or previously calculated blood pressure. For example, the audible indicators may be indicative of changes in the subject's blood pressure over time. The audible indicators representing blood pressure may be synchronized with other audible indicators that represent other physiological parameters of the subject, such as, the subject's heart rate.
摘要:
Techniques and structures are disclosed for using photoplethysmograph (PPG) and electrocardiographic (EKG)-based readings of a subject to determine one or more physiological characteristics of the subject. In an arrangement, a combined PPG-EKG sensor unit may be used to detect both PPG and EKG signals of the subject. The sensor unit may include a PPG sensor, an EKG sensor, and a support structure for connecting or fastening the sensor unit to the subject. The detected readings may be provided to an electronic monitor. In an arrangement, a PPG-EKG monitoring system, including the electronic monitor, may be used to determine the physiological parameters of the subject. The monitoring system may first determine an auxiliary parameter based at least in part on the EKG signal, and then compute the one or more physiological characteristics of the subject based at least in part on both the PPG signal and the auxiliary parameter.
摘要:
The present disclosure relates to systems and methods for analyzing and normalizing signals, such as PPG signals, for use in patent monitoring. The PPG signal may be detected using a continuous non-invasive blood pressure monitoring system and the normalized signals may be used to determine whether a recalibration of the system should be performed.