摘要:
A process for the continuous purification of biodiesel (fatty acid alkyl esters (FAAE)) is described using a powdered, granulated or extruded adsorbent. The adsorbent is contained in a column system and is regenerated for reuse multiple times. The crude biodiesel is contacted with an adsorbent packed into a column, or multiple columns in series, for a sufficient amount of time to remove impurities such as, but not limited to, soaps, metals, free glycerin, sterol glucosides and many of the other impurities that reduce the stability of biodiesel. The resulting finished biodiesel exiting the column(s) is ready for the methanol recovery process. Once the adsorbent no longer removes the desired amount of impurities, it is regenerated for reuse. The solvent used for the regeneration process is reclaimed and reused by recycling it back to the transesterification reaction.
摘要:
An economical and environmentally friendly, “green”, process for the continuous purification of triacylglycerol (TAG) is described using a powdered, granulated or extruded adsorbent, which can be used in either the chemical or physical refining of edible oils and fats, both of which are traditionally used to refine TAG. The adsorbent is contained in a column system and is regenerated for reuse multiple times. The process utilizes the adsorbent column system as a treatment after chemical refining or before physical refining rather than water or filtration, respectively, to remove soaps and other impurities entrained in a crude triacylglycerol. In the chemical refining process, the crude degummed triacylglycerol (CDTAG) is first refined to remove FFA, forming a once refined triacylglycerol (ORTAG), and then contacted with an adsorbent packed into column(s) prior to deodorization. In the physical refining process, the crude degummed triacylglycerol (CDTAG) is contacted with an adsorbent packed into column(s) prior to the removal of FFA and subsequent deodorization. The CDTAG or ORTAG is contacted with an adsorbent packed into a column, or multiple columns in series, for a sufficient amount of time to remove impurities such as, but not limited to, soaps, metals, chlorophyll, and many of the other compounds that reduce the stability of the TAG. The resulting TAG exiting the column(s) is ready for the deodorization process. Once the adsorbent no longer removes the desired amount of impurities, it is regenerated for reuse. Such a continuous regenerable adsorbent refining process substantially reduces the amount of fresh water required and the amount of waste water generated to purify TAG and reduces the amount of solid waste produced. The result is a cost effective and environmentally friendly edible oil refining process.
摘要:
A quick, economical and environmentally friendly, “green”, process for the continuous purification of biodiesel (fatty acid alkyl esters (FAAE)) is described using a powdered, granulated or extruded adsorbent. The adsorbent is contained in a column system and is regenerated for reuse multiple times. The process employs an adsorbent such as, but not limited to, carbon, silica, clay, zeolite or a metal silicate contained in a column to remove the impurities from fatty acid alkyl esters (FAAE) or crude biodiesel in a continuous process. The process utilizes the adsorbent column system for the purification of biodiesel, rather than water or filtration, to remove soaps and other impurities entrained in a crude biodiesel. The crude biodiesel is contacted with an adsorbent packed into a column, or multiple columns in series, for a sufficient amount of time to remove impurities such as, but not limited to, soaps, metals, free glycerin, sterol glucosides and many of the other impurities that reduce the stability of biodiesel. The resulting finished biodiesel exiting the column(s) is ready for the methanol recovery process. Once the adsorbent no longer removes the desired amount of impurities, it is regenerated for reuse. The solvent used for the regeneration process is reclaimed and reused by recycling it back to the transesterification reaction.
摘要:
The process utilizes the adsorbent column system as a treatment after chemical refining or before physical refining rather than water or filtration, respectively, to remove soaps and other impurities entrained in a crude triacylglycerol. The CDTAG or ORTAG is contacted with an adsorbent packed into a column, or multiple columns in series, for a sufficient amount of time to remove impurities such as, but not limited to, soaps, metals, chlorophyll, and many of the other compounds that reduce the stability of the TAG. The resulting TAG exiting the column(s) is ready for the deodorization process. Once the adsorbent no longer removes the desired amount of impurities, it is regenerated for reuse. Such a continuous regenerable adsorbent refining process substantially reduces the amount of fresh water required and the amount of waste water generated to purify TAG and reduces the amount of solid waste produced.
摘要:
A quick, economical and environmentally friendly, “green”, process for the continuous purification of biodiesel (fatty acid alkyl esters (FAAE)) is described using a powdered, granulated or extruded adsorbent. The adsorbent is contained in a column system and is regenerated for reuse multiple times. The process employs an adsorbent such as, but not limited to, carbon, silica, clay, zeolite or a metal silicate contained in a column to remove the impurities from fatty acid alkyl esters (FAAE) or crude biodiesel in a continuous process. The process utilizes the adsorbent column system for the purification of biodiesel, rather than water or filtration, to remove soaps and other impurities entrained in a crude biodiesel. The crude biodiesel is contacted with an adsorbent packed into a column, or multiple columns in series, for a sufficient amount of time to remove impurities such as, but not limited to, soaps, metals, free glycerin, sterol glucosides and many of the other impurities that reduce the stability of biodiesel. The resulting finished biodiesel exiting the column(s) is ready for the methanol recovery process. Once the adsorbent no longer removes the desired amount of impurities, it is regenerated for reuse. The solvent used for the regeneration process is reclaimed and reused by recycling it back to the transesterification reaction.
摘要:
The method of purifying an unrefined edible oil or fat by contacting the unrefined edible oil or fat with at least one adsorbent material. The at least one adsorbent material comprises magnesium silicate. The magnesium silicate may be used alone or in combination with other purifying materials, such as citric acid. Such method provides for improved removal of impurities, such as phosphorus-containing compounds, soap, chlorophyll, metals, and sterol glucosides from the unrefined edible oil or fat.
摘要:
The method of purifying an unrefined edible oil or fat by contacting the unrefined edible oil or fat with at least one adsorbent material. The at least one adsorbent material comprises magnesium silicate. The magnesium silicate may be used alone or in combination with other purifying materials, such as citric acid. Such method provides for improved removal of impurities, such as phosphorus-containing compounds, soap, chlorophyll, metals, and sterol glucosides from the unrefined edible oil or fat.
摘要:
A reciprocating pipe cutter that uses a thin diameter wire saw as a cutting element. The wire saw blade attaches at one end to a reciprocating blade that can is mounted into a standard electrically powered reciprocating saw tool. The saw wire proceeds from the reciprocating blade, around the perimeter of a fixed pulley and then around the perimeter of a pulley mounted to a swingable arm. The wire terminates at its other end to an extension spring. When the electric tool is turned on, the saw wire reciprocates so that when the wire is pushed into the wall of a pipe, it can cut the pipe in two. The swingable arm allows pipes of varying diameters to be cut. The reciprocating pipe cutting tool allows the user to cut a pipe while it is in place without doing damage to near by surfaces.
摘要:
A method of purifying a rendered fat by contacting the rendered fat with at least one adsorbent material, such as magnesium silicate. The at least one adsorbent material may be used alone or in combination with other purifying materials, such as an acid. Such method provides for improved removal of impurities, such as polyethylene, phosphorus-containing compounds, chlorophyll, metals, soap, and sterol glucosides from the rendered fat.
摘要:
A method of purifying a rendered fat by contacting the rendered fat with at least one adsorbent material, such as magnesium silicate. The at least one adsorbent material may be used alone or in combination with other purifying materials, such as an acid. Such method provides for improved removal of impurities, such as polyethylene, phosphorus-containing compounds, chlorophyll, metals, soap, and sterol glucosides from the rendered fat.