摘要:
The present invention provides a means for operating the CPU in a single chip microprocessor at a multipe of the cycle speed of the memory bus. With the present invention, first and second timing signals are provided. The frequency of the second timing signal is a multiple of the frequency of the first timing signal. The second or fast timing signal is provided to the CPU and the first or slower timing signal is provided to the memory subsystem. A bus interface unit is interposed between the CPU and the memory bus. This bus interface unit receives the RDY signal (i.e. the ready signal) from the memory subsystem and modifies it before it is provided to the CPU. The "ready" signal from the memory subsystem is in an undefined state for a significant portion of each bus cycle. Since at least two CPU cycles occur during each memory access, the bus interface unit must ensure that the CPU does not misinterpret the ready signal from the memory subsystem. The bus interface unit also must modify the ADS signal (i.e. the address status signal) generated by the CPU. The ADS and RDY signals must be modified in a first way if the CPU calls for a memory cycle at the beginning of a bus cycle and in a second way if the CPU calls for a memory cycle in the middle of a CPU cycle. The use of a CPU clock speed doubler in combination with a write-back cache achieves truly synergistic increases in system speed.
摘要:
The present invention provides a means for operating the CPU in a single chip microprocessor at a multipe of the cycle speed of the memory bus. With the present invention, first and second timing signals are provided. The frequency of the second timing signal is a multiple of the frequency of the first timing signal. The second or fast timing signal is provided to the CPU and the first or slower timing signal is provided to the memory subsystem. A bus interface unit is interposed between the CPU and the memory bus. This bus interface unit receives the RDY signal (i.e. the ready signal) from the memory subsystem and modifies it before it is provided to the CPU. The "ready" signal from the memory subsystem is in an undefined state for a significant portion of each bus cycle. Since at least two CPU cycles occur during each memory access, the bus interface unit must ensure that the CPU does not misinterpret the ready signal from the memory subsystem. The bus interface unit also must modify the ADS signal (i.e. the address status signal) generated by the CPU. The ADS and RDY signals must be modified in a first way if the CPU calls for a memory cycle at the beginning of a bus cycle and in a second way if the CPU calls for a memory cycle in the middle of a CPU cycle. The use of a CPU clock speed doubler in combination with a write-back cache achieves truly synergistic increases in system speed.
摘要:
A method and apparatus for performing a fast jump address calculation is disclosed. A field from the instruction is provided to an adder, on the assumption that it is the displacement value, without actually determining whether it is a displacement value. A fixed instruction length is also provided to the adder, on the assumption that the instruction will have that length. Finally, the current instruction address bits from the program counter are provided to the adder. These are added together to provide a jump address.
摘要:
An improved system for checking for segmentation violations counts the total number of bytes accessed from the control segment following a control transfer operation. If the count indicates that a part of an instruction is fetched from outside the control segment a limit exception occurs.