摘要:
A tissue stimulation system is provided that evaluates and/or scores stimulation sets based on both patient feedback and frequency of use. Stimulation sets and any associated scores and/or usage may be stored in a retrievable database. Upon subsequent stimulation sessions, a patient may select stimulation sets that have a high score and/or usage in order to effectively meet therapeutic objectives. Methods of determining patient satisfaction, which involve evaluating patient pain before and after stimulation pulses are applied, are also provided herein.
摘要:
Methods for selecting stimulation parameter sets guide a clinician towards an effective set(s) of stimulation parameters. The clinician first evaluates the effectiveness of a small number of trial stimulation parameters sets from a Measurement Table comprising for example, four stimulation parameter sets, measuring the perception threshold and maximum threshold levels. The maximum comfortable step size and desired field shift resolution are determined, and are used along with the measured threshold levels to determine an appropriate step size to use in the current steering process. In order to maintain paresthesia at a relatively constant level during the steering process, a Superposition Equalization (SEQ) algorithm is used to compensate for the physical characteristics of the lead array, i.e., electrode separation and size. A multiplier is determined and a modifying function is used to apply this multiplier to the electrode energy output during transition to maintain a relatively constant current density.
摘要:
A method for selecting Spinal Cord Stimulation (SCS) stimulation parameter sets guides a clinician towards an effective set of stimulation parameters. The clinician first evaluates the effectiveness of a small number of trial stimulation parameters sets from a Measurement Table comprising for example, four stimulation parameter sets. Based on the patient's assessment, the trial stimulation parameter sets are ranked. Then the clinician selects a starting or benchmark row in a Steering Table corresponding to the highest ranked trial stimulation parameter set. The clinician moves either up or down form the starting row, testing consecutive parameter sets. The clinician continues as long as the patient indicates that the stimulation results are improving. When a local optimum is found, the clinician returns to the benchmark row, and tests in the opposite direction for another local optimum. If an acceptable set of stimulation parameters is found, the selection process is complete. If an acceptable set is not found, a new starting row in the Steering Table is selected based on the next ranked trial set from the Measurement Table, and the process of searching for local optima is repeated.
摘要:
A method for selecting Spinal Cord Stimulation (SCS) stimulation parameter sets guides a clinician towards an effective set of stimulation parameters. The clinician first evaluates the effectiveness of a small number of trial stimulation parameters sets from a Measurement Table comprising for example, four stimulation parameter sets. Based on the patient's assessment, the trial stimulation parameter sets are ranked. Then the clinician selects a starting or benchmark row in a Steering Table corresponding to the highest ranked trial stimulation parameter set. The clinician moves either up or down form the starting row, testing consecutive parameter sets. The clinician continues as long as the patient indicates that the stimulation results are improving. When a local optimum is found, the clinician returns to the benchmark row, and tests in the opposite direction for another local optimum. If an acceptable set of stimulation parameters is found, the selection process is complete. If an acceptable set is not found, a new starting row in the Steering Table is selected based on the next ranked trial set from the Measurement Table, and the process of searching for local optima is repeated.
摘要:
A system and method for rapidly switching stimulation parameters of a Spinal Cord Stimulation (SCS) system increases the number of stimulation parameter sets that may be tested during a fitting procedure, or alternatively, reduces the time required for the fitting procedure. The switching method comprises selecting a new stimulation parameter set, and setting the initial stimulation levels to levels at or just below an estimated perception threshold of the patient. The estimated perception level is based on previous stimulation results. The stimulation level is then increased to determine a minimum stimulation level for effective stimulation, and/or an optimal stimulation level, and/or a maximum stimulation level, based on patient perception.
摘要:
Tissue stimulation systems generally include a pulse generating device for generating electrical stimulation pulses, at least one implanted lead including at least one electrode for delivering the electrical stimulation pulses generated by the pulse generating device, and a programmer capable of communicating with the pulse generating device. In tissue stimulation systems, two or more electrical stimulation combinations may be delivered to a patient simultaneously through a reduced number of channels. Systems and methods described herein may combine the two or more stimulation combinations into a reduced number of new stimulation combinations for delivery of the stimulation combinations over a reduced number of channels.
摘要:
A method, computer medium, and system for programming a control device are provided. The control device is configured for controlling electrical stimulation energy provided to a plurality of electrode leads that are physically implanted within a patient in a side-by-side lead configuration. Electrical energy is conveying from the electrode leads to create a stimulation region within the patient. The stimulation region is automatically shifted along the electrode leads (e.g., by selecting and using at least one navigation table) in accordance with an electrical current shifting pattern that is based on a stagger of the side-by-side lead configuration. At least one stimulation parameter set is selected based on the effectiveness of the shifted stimulation region, and the control device is programmed with the selected stimulation parameter set(s).
摘要:
A tissue stimulation system is provided that evaluates and/or scores stimulation sets based on both patient feedback and frequency of use. Stimulation sets and any associated scores and/or usage may be stored in a retrievable database. Upon subsequent stimulation sessions, a patient may select stimulation sets that have a high score and/or usage in order to effectively meet therapeutic objectives. Methods of determining patient satisfaction, which involve evaluating patient pain before and after stimulation pulses are applied, are also provided herein.
摘要:
Interelectrode impedance or electric field potential measurements are used to determine the relative orientation of one lead to other leads in the spinal column or other body/tissue location. Interelectrode impedance is determined by measuring impedance vectors. The value of the impedance vector is due primarily to the electrode-electrolyte interface, and the bulk impedance between the electrodes. The bulk impedance between the electrodes is, in turn, made up of (1) the impedance of the tissue adjacent to the electrodes, and (2) the impedance of the tissue between the electrodes. In one embodiment, the present invention makes both monopolar and bipolar impedance measurements, and then corrects the bipolar impedance measurements using the monopolar measurements to eliminate the effect of the impedance of the tissue adjacent the electrodes. The orientation and position of the leads may be inferred from the relative minima of the corrected bipolar impedance values. These corrected impedance values may also be mapped and stored to facilitate a comparison with subsequent corrected impedance measurement values. Such comparison allows a determination to be made as to whether the lead position and/or orientation has changed appreciably over time. In another embodiment, one or more electrodes are stimulated and the resulting electric field potential on the non-stimulated electrodes is measured. Such field potential measurements provide an indication of the relative orientation of the electrodes. Once known, the relative orientation may be used to track lead migration, to setup stimulation configurations and parameters for nominal stimulation and/or navigation. Also, such measurements allow automatic adjustment of stimulation energy to a previously-defined optimal potential field in the case of lead migration or postural changes.
摘要:
A method for determining whether the relative position of electrodes used by a neurostimulation system has changed within a patient comprises determining the amplitude of a field potential at each of at least one of the electrodes, determining if a change in each of the determined electric field amplitudes has occurred, and analyzing the change in each of the determined electric field amplitudes to determine whether a change in the relative position of the electrodes has occurred. Another method comprises measuring a first monopolar impedance between a first electrode and a reference electrode, measuring a second monopolar impedance between second electrode and the reference electrode, measuring a bipolar impedance between the first and second electrodes, and estimating an amplitude of a field potential at the second electrode based on the first and second monopolar impedances and the bipolar impedance.