摘要:
Highly sensitive fluorescent zinc or cadmium sensors are derived from 8-hydroxyquinaldine, a well-established fluorescent zinc probe, as a building block. High binding efficiency was achieved by incorporating two 8-hydroxyquninaldine moieties into a single ligand. Incorporation of sulfonamide groups further improved binding efficiency. The compounds make it possible to monitor zinc ion or cadmium ion concentration in the picomolar or femtomolar range.
摘要:
A method and system for providing an article of manufacture with increased longevity of hyperpolarized 1H signals (and other species) for NMR spectroscopy and MRI. The method involves providing a material including a molecular species susceptible of NMR spectroscopy, by providing parahydrogen (and other appropriate species) to disperse within the material/solvent to establish increased longevity of the NMR signals. The material can be in a solution with a surfactant and catalysts added to enhance the persistence of parahydrogen (or other species) in the form of enhanced solubility, microbubbles or micelles and resultant hydrogenation (or other species) of the material.
摘要:
Complexes of organic ligands with a metal ion exhibit unique conformation and spectroscopic properties upon changes in oxidation state of the metal ion. The metal is a redox-active metal ion and may possess additional ligands bonded to it. The organic ligand has three “arms” that are linked together at a central atom; each arm contains atoms that may also coordinate to the metal ion. At least two of the arms possess chromophoric properties. At least one arm contains two different groups that may coordinate to the metal ion. In one oxidation state, a first atom binds to the metal. In a second oxidation state, a second atom binds to the metal. This change in coordination of the metal ion results in a rotation of one of the arms, which changes the orientation of another group, which inverses the orientation of the two chromophoric species with respect to one another.
摘要:
Complexes of organic ligands with a metal ion exhibit unique conformation and spectroscopic properties upon changes in oxidation state of the metal ion. The metal is a redox-active metal ion and may possess additional ligands bonded to it. The organic ligand has three “arms” that are linked together at a central atom; each arm contains atoms that may also coordinate to the metal ion. At least two of the arms possess chromophoric properties. At least one arm contains two different groups that may coordinate to the metal ion. In one oxidation state, a first atom binds to the metal. In a second oxidation state, a second atom binds to the metal. This change in coordination of the metal ion results in a rotation of one of the arms, which changes the orientation of another group, which inverses the orientation of the two chromophoric species with respect to one another.