Abstract:
Embodiments include a method in a server for facilitating anonymous communication between a first web browser on a first communication device and a second web browser on a second communication device. The method includes dynamically establishing a signalling channel on the server for the first web browser responsive to the first web browser browsing to the server. The method further includes creating a unique identifier for the signalling channel, temporarily storing the unique identifier at the server, and then sending the unique identifier to the first web browser. The first communication device correspondingly sends the unique identifier to the second web browser, such an in an email or text message. Then, responsive to the second web browser browsing to the server using the unique identifier, the method includes connecting the second web browser to the established signaling channel for anonymous communication between the first and second web browsers over that channel.
Abstract:
A technique for obtaining executable code by a multi-core client device comprising a host core and at least one processing element implemented on a core different from the host core is provided. A method embodiment of this technique comprises the following steps performed by the host core at run-time of a host program: determining a non-executable code portion embedded in the host program; requesting executable code for a detected non-executable code portion from a remote network server; receiving the requested executable code from the network server; and providing the received executable code for execution by the processing element. The host program may conform to the OpenCL framework or any other framework that permits the embedding of non-executable code portions in an executable host program.
Abstract:
Teachings herein compose a digital image so that the image is perceptible on a viewing surface, such as a projection surface or a transparent screen. In doing so, the teachings advantageously recognize a digital image as consisting of one or more logical objects, like buttons of a user interface. Often, logical objects may be spatially arranged within the image and/or colored in different possible ways without substantially affecting the meaning conveyed by the image. Exploiting this, teachings herein evaluate light reflected from, or transmitted through, the viewing surface, and compose the digital image from one or more logical objects that have a spatial arrangement or coloration determined in dependence on that evaluation. The teachings might, for example, place a logical object within the image so that it will be displayed on a region of the surface which has high contrast with the object's colors and/or low color variance.
Abstract:
Teachings herein compose a digital image so that the image is perceptible on a viewing surface, such as a projection surface or a transparent screen. In doing so, the teachings advantageously recognize a digital image as consisting of one or more logical objects, like buttons of a user interface. Often, logical objects may be spatially arranged within the image and/or colored in different possible ways without substantially affecting the meaning conveyed by the image. Exploiting this, teachings herein evaluate light reflected from, or transmitted through, the viewing surface, and compose the digital image from one or more logical objects that have a spatial arrangement or coloration determined in dependence on that evaluation. The teachings might, for example, place a logical object within the image so that it will be displayed on a region of the surface which has high contrast with the object's colors and/or low color variance.
Abstract:
Teachings herein prepare a digital image for display on a substantially transparent screen. The teachings advantageously recognize that the perceptibility of the digital image on the screen will often depend on what is visible to a user through the screen, since that will effectively serve as the background of the screen. A method of preparing a digital image thus includes dynamically calculating which part of an environmental background is visible to a user through the screen and thereby serves as an effective background of the screen. This calculation may entail obtaining an image of the environmental background and identifying which part of that image serves as the effective background (e.g., based on the angle at which the user views the screen). The method further includes composing the digital image for perceptibility as viewed against that effective background and outputting the composed image as digital data for display on the screen.
Abstract:
A turbo compound transmission, such as in a heavy duty or medium duty diesel engine, includes a turbo compound turbine to be driven by exhaust gases from an internal combustion engine, and a coupling including a first rotor including a mechanical input drive adapted to be driven by the turbine, and a second rotor including a mechanical output drive. A brake is arranged to brake and limit the rotation of the turbine. The coupling is arranged to decouple when braking with the brake, subjecting the coupling to a torque above a predetermined torque limit. A method for controlling a turbo compound transmission is also disclosed.
Abstract:
In an exhaust valve mechanism for an internal combustion engine the main rocker arm is mounted on a rocker arm shaft for normal valve operation via a cam element. A secondary rocker arm is mounted on the shaft for activation of an exhaust brake mode. The activation is achieved through supply of hydraulic pressure to a piston cylinder arrangement acting between the main and secondary rocker arms. A master piston and a slave piston are connected by a hydraulic-link allowing activation by increased hydraulic pressure. When activating the exhaust gas temperature increasing mode, the master piston is moved to an active position for part of its stroke against the force of a first resilient member. When activating the exhaust brake mode, the master piston is moved the full movement of its stroke against the combined forces of the first resilient member and a second resilient member as active position. The end of the first stroke length defines a position for the master piston allowing activation of an extra valve event.
Abstract:
In an exhaust valve mechanism for an internal combustion engine the main rocker arm is mounted on a rocker arm shaft for normal valve operation via a cam element. A secondary rocker arm is mounted on the shaft for activation of an exhaust brake mode. The activation is achieved through supply of hydraulic pressure to a piston cylinder arrangement acting between the main and secondary rocker arms. A master piston and a slave piston are connected by a hydraulic-link allowing activation by increased hydraulic pressure. When activating the exhaust gas temperature increasing mode, the master piston is moved to an active position for part of its stroke against the force of a first resilient member. When activating the exhaust brake mode, the master piston is moved the full movement of its stroke against the combined forces of the first resilient member and a second resilient member as active position. The end of the first stroke length defines a position for the master piston allowing activation of an extra valve event.
Abstract:
A mobile device adapted to provide an indication of the proximate co-presence of a buddy—another user who has agreed to be indicated as nearby—using a short-range (local) transceiver to scan for a low-level identifier associated with a compatible short-range transceiver in a mobile device operated by the buddy. The mobile device provides an indication of proximate co-presence of another only in case of permission.
Abstract:
An exhaust valve mechanism for an internal combustion engine with at least one exhaust valve in every engine cylinder includes a main rocker arm mounted on a rocker arm shaft and a secondary rocker arm arranged on the main rocker arm and mounted on the rocker arm shaft for the activation of an exhaust brake function. A spring device is so arranged as to act between a fixed point on the engine and the secondary rocker arm, in such a way that the latter rocker arm is caused by the spring force to engage with the cam element of the camshaft.