Dendritic taper for an integrated optical wavelength router
    2.
    发明授权
    Dendritic taper for an integrated optical wavelength router 有权
    集成光波长路由器的树枝状锥度

    公开(公告)号:US06697552B2

    公开(公告)日:2004-02-24

    申请号:US09848093

    申请日:2001-05-03

    IPC分类号: G02B634

    摘要: The present invention generally provides an optical wavelength router that includes at least one dendritic taper region. The dendritic taper region includes at least one dendritic taper which has a trunk and at least one branch optically coupled to the trunk. In addition to the dendritic taper region, the optical wavelength router includes at least one input waveguide, a input slab waveguide, an arrayed waveguide grating, an output slab waveguide, and at least one output waveguide. The improved optical wavelength router provides a wide passband width without a substantial effect on insertion loss.

    摘要翻译: 本发明通常提供一种光波长路由器,其包括至少一个树枝状锥形区域。 树枝状锥形区域包括至少一个枝状锥体,其具有树干和至少一个光学耦合到树干的分支。 除了树枝状锥形区域之外,光学波长路由器还包括至少一个输入波导,输入平板波导,阵列波导光栅,输出平板波导和至少一个输出波导。 改进的光波长路由器提供宽的通带宽度,而对插入损耗没有实质的影响。

    Waveguide-grating router with output tapers configured to provide a passband that is optimized for each channel individually
    3.
    发明授权
    Waveguide-grating router with output tapers configured to provide a passband that is optimized for each channel individually 有权
    具有输出锥度的波导光栅路由器被配置为提供针对每个通道单独优化的通带

    公开(公告)号:US06735363B1

    公开(公告)日:2004-05-11

    申请号:US10096124

    申请日:2002-03-08

    IPC分类号: G02B634

    CPC分类号: G02B6/12011

    摘要: An optical integrated circuit (OIC) or optical apparatus upon which a waveguide-grating router (WGR) device is fashioned is provided, where the circuit is configured to optimize a passband for each channel transmitted on an output waveguide. The WGR has two or more waveguides of varying widths optically coupled to a slab waveguide. The widths can be configured to facilitate producing a substantially uniform frequency-limited bandwidth, a substantially uniform wavelength-limited bandwidth, a substantially uniform isolation value, and/or a substantially uniform value for insertion loss between the output waveguides, which in turn facilitates producing optical data communication devices with more consistent transmission parameters and higher quality. In addition to various widths, the shape of the delivering end of a slab waveguide can be fashioned to further improve the consistency and quality of such parameters.

    摘要翻译: 提供了一种在其上形成波导 - 光栅路由器(WGR)设备的光学集成电路(OIC)或光学设备,其中电路被配置为优化在输出波导上传输的每个通道的通带。 WGR具有光学耦合到平板波导的两个或更多个不同宽度的波导。 宽度可以被配置为有助于产生基本均匀的频率限制带宽,基本均匀的波长限制带宽,基本上均匀的隔离值,和/或输出波导之间的插入损耗的基本上均匀的值,这反过来有助于产生 光学数据通信设备具有更一致的传输参数和更高的质量。 除了各种宽度之外,可以形成平板波导的输送端的形状,以进一步提高这些参数的一致性和质量。

    Multi-band arrayed waveguide grating
    4.
    发明授权
    Multi-band arrayed waveguide grating 有权
    多波段阵列波导光栅

    公开(公告)号:US06678446B1

    公开(公告)日:2004-01-13

    申请号:US09970207

    申请日:2001-10-03

    IPC分类号: G02B634

    CPC分类号: G02B6/12016 G02B6/12019

    摘要: An arrayed waveguide grating router (AWGR) comprises sets of output waveguides for a number of bands. Angular separation of adjacent output waveguides is relatively small for adjacent output waveguides. within a band and significantly larger for adjacent output waveguides belonging to different bands. In specific embodiments the output waveguides are arranged into at least two bands, each band comprising at least two adjacent waveguides. Each band is used in conjunction with an input waveguide specific to the particular band. AWGRs according to the invention may be made so that the passbands from a plurality of output waveguides fall on a wavelength grid or a frequency grid. Dummy waveguides may be included for ease of fabrication.

    摘要翻译: 阵列波导光栅路由器(AWGR)包括用于多个频带的输出波导组。 相邻输出波导的角分离相对较小。 并且对于属于不同频带的相邻输出波导显着更大。 在具体实施例中,输出波导被布置成至少两个频带,每个频带包括至少两个相邻的波导。 每个频带与特定频带的输入波导结合使用。 可以进行根据本发明的AWGR,使得来自多个输出波导的通带落在波长网格或频率网格上。 可以包括虚拟波导以便于制造。

    Thermal control of optical components
    5.
    发明申请
    Thermal control of optical components 有权
    光学部件的热控制

    公开(公告)号:US20060279734A1

    公开(公告)日:2006-12-14

    申请号:US10760145

    申请日:2004-01-16

    IPC分类号: G01J3/28

    摘要: A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.

    摘要翻译: 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,例如阵列波导光栅(AWG),可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个AWG可以单独稳定,使用相同的过程并将交叉加热因子与其他环境因素结合在一起。 或者,通过使用比AWG更少的传感器,可以使用比AWG更少的传感器来稳定多个AWG,通过以与单个AWG相同的方式稳定AWG之一,并根据线性化模型确定剩余AWG的加热器中消耗的功率。

    THERMAL CONTROL OF OPTICAL COMPONENTS
    6.
    发明申请
    THERMAL CONTROL OF OPTICAL COMPONENTS 有权
    光学元件的热控制

    公开(公告)号:US20090087138A1

    公开(公告)日:2009-04-02

    申请号:US12241860

    申请日:2008-09-30

    IPC分类号: G02B6/12

    摘要: A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple optical elements can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than optical elements, by stabilizing one of the optical elements in the same manner as in the case of a single optical elements, and determining power dissipated in the heaters of the remaining optical elements based on the linearized model.

    摘要翻译: 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个光学元件可以单独稳定,使用相同的工艺并将交叉加热因子与其他环境因素结合在一起。 或者,通过以与单个光学元件的情况相同的方式来稳定光学元件之一,可以使用比光学元件少的传感器来稳定多个AWG,并且基于所述光学元件的剩余光学元件的加热器确定功率消耗 线性化模型。

    Thermal control of optical components
    7.
    发明授权
    Thermal control of optical components 有权
    光学部件的热控制

    公开(公告)号:US07720328B2

    公开(公告)日:2010-05-18

    申请号:US12241860

    申请日:2008-09-30

    IPC分类号: G02B6/12

    摘要: A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple optical elements can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than optical elements, by stabilizing one of the optical elements in the same manner as in the case of a single optical elements, and determining power dissipated in the heaters of the remaining optical elements based on the linearized model.

    摘要翻译: 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个光学元件可以单独稳定,使用相同的工艺并将交叉加热因子与其他环境因素结合在一起。 或者,通过以与单个光学元件的情况相同的方式来稳定光学元件之一,可以使用比光学元件少的传感器来稳定多个AWG,并且基于所述光学元件的剩余光学元件的加热器确定功率消耗 线性化模型。

    Thermal control of optical components
    8.
    发明授权
    Thermal control of optical components 有权
    光学部件的热控制

    公开(公告)号:US07447393B2

    公开(公告)日:2008-11-04

    申请号:US10760145

    申请日:2004-01-16

    IPC分类号: G02B6/12

    摘要: A linearized thermal and optical model of an optical integrated circuit can be used to temperature-stabilize one or more optical elements of the circuit using active temperature regulation. To stabilize a single optical element, such as an arrayed waveguide grating (AWG), a temperature sensor and a heater can be provided proximate to the grating. Thermal and optical coefficients can be then used to select an appropriate temperature set-point for the temperature controller that receives readings from the sensor and determines the power dissipated in the heater. Multiple AWG's can be stabilized individually, using the same process and lumping cross-heating factors together with other environmental factors. Alternatively, multiple AWG's can be stabilized using fewer sensors than AWG's, by stabilizing one of the AWG's in the same manner as in the case of a single AWG, and determining power dissipated in the heaters of the remaining AWG's based on the linearized model.

    摘要翻译: 可以使用光学集成电路的线性化热和光学模型来使用主动温度调节来温度稳定电路的一个或多个光学元件。 为了稳定单个光学元件,例如阵列波导光栅(AWG),可以在光栅附近提供温度传感器和加热器。 然后可以使用热系数和光学系数为温度控制器选择适当的温度设定点,该温度控制器从传感器接收读数并确定加热器中消耗的功率。 多个AWG可以单独稳定,使用相同的过程并将交叉加热因子与其他环境因素结合在一起。 或者,通过使用比AWG更少的传感器,可以使用比AWG更少的传感器来稳定多个AWG,通过以与单个AWG相同的方式稳定AWG之一,并根据线性化模型确定剩余AWG的加热器中消耗的功率。

    Chemical scavenger for downhole chemical analysis
    9.
    发明授权
    Chemical scavenger for downhole chemical analysis 有权
    化学清除剂用于井下化学分析

    公开(公告)号:US09212551B2

    公开(公告)日:2015-12-15

    申请号:US13311546

    申请日:2011-12-05

    摘要: A method for analyzing formation fluid in a subterranean formation is disclosed, wherein the method includes the steps of: adding a scavenger compound to an analytical reagent to form a reagent solution; collecting an amount of formation fluid into a formation tester, wherein the formation tester includes at least one fluids analyzer comprising at least one probe, at least one flow line, at least one reagent container, and at least one spectral analyzer, wherein the fluids analyzer is configured such that the collected formation fluid is fed through the at least one flow line to the at least one spectral analyzer; mixing an amount of the collected formation fluid with an amount of the reagent solution to form a mixture; and analyzing the mixture downhole.

    摘要翻译: 公开了一种用于分析地层中地层流体的方法,其中所述方法包括以下步骤:向分析试剂中加入清除剂化合物以形成试剂溶液; 将一定量的地层流体收集到地层测试器中,其中地层测试仪包括至少一种流体分析仪,其包括至少一个探针,至少一个流线,至少一个试剂容器和至少一个光谱分析仪,其中流体分析仪 被配置成使得所收集的地层流体通过所述至少一个流动线路馈送到所述至少一个光谱分析器; 将一定量的收集的地层流体与一定量的试剂溶液混合以形成混合物; 并分析井下混合物。

    Chemical Scavenger For Downhole Chemical Analysis
    10.
    发明申请
    Chemical Scavenger For Downhole Chemical Analysis 有权
    化学清除剂用于井下化学分析

    公开(公告)号:US20120149604A1

    公开(公告)日:2012-06-14

    申请号:US13311546

    申请日:2011-12-05

    IPC分类号: C09K8/12 E21B47/10

    摘要: A method for analyzing formation fluid in a subterranean formation is disclosed, wherein the method includes the steps of: adding a scavenger compound to an analytical reagent to form a reagent solution; collecting an amount of formation fluid into a formation tester, wherein the formation tester includes at least one fluids analyzer comprising at least one probe, at least one flow line, at least one reagent container, and at least one spectral analyzer, wherein the fluids analyzer is configured such that the collected formation fluid is fed through the at least one flow line to the at least one spectral analyzer; mixing an amount of the collected formation fluid with an amount of the reagent solution to form a mixture; and analyzing the mixture downhole.

    摘要翻译: 公开了一种用于分析地层中地层流体的方法,其中所述方法包括以下步骤:向分析试剂中加入清除剂化合物以形成试剂溶液; 将一定量的地层流体收集到地层测试器中,其中地层测试仪包括至少一种流体分析仪,其包括至少一个探针,至少一个流线,至少一个试剂容器和至少一个光谱分析仪,其中流体分析仪 被配置成使得所收集的地层流体通过所述至少一个流动线路馈送到所述至少一个光谱分析器; 将一定量的收集的地层流体与一定量的试剂溶液混合以形成混合物; 并分析井下混合物。