Abstract:
According to an aspect, a display device includes: sub-pixels arranged in row and column directions and each including a memory block including memories to store therein sub-pixel data; memory selection line groups corresponding to rows and each including memory selection lines electrically coupled to the memory blocks in the respective sub-pixels that belong to the corresponding row; and a memory selection circuit configured to concurrently output a memory selection signal to the memory selection line groups. Each sub-pixel displays an image based on the sub-pixel data stored in one of the memories in accordance with the memory selection line supplied with the memory selection signal. The number of times that the set value is changed is less than the number of times that images are switched from one to another based on the memory selection signal output from the memory selection circuit.
Abstract:
A display device includes an image display panel whose display is controlled by an image signal, a backlight which includes light sources and lights the image display panel from behind, and a display control section which calculates, based on the image signal, the required luminance value of the backlight for each divided area of the image display panel, calculates a tentative lighting level of each light source based on luminance distribution information for the backlight stored previously and the required luminance values, sets the lighting level of a first light source whose tentative lighting level exceeds an upper limit to the upper limit, determines the lighting level of a second light source whose tentative lighting level does not exceed the upper limit, based on the lighting level of the first light source, luminance distribution information, and required luminance value, and controls the backlight by the lighting levels.
Abstract:
According to an aspect, a display device includes: an image display panel; and a planar light source including a light guide plate and an edge-lit light source, the light guide plate illuminating the image display panel from a back side, the edge-lit light source including a plurality of light sources arranged facing a plane of incidence; and a controller that controls luminance of each of the light sources independently. The controller stores therein, as lookup tables for the respective light sources, information on light intensity distributions of light that is incident on the light guide plate from the respective light sources and is emitted to a plane of the image display panel from the light guide plate, and controls a light quantity of each of the light sources based on information on an input signal of an image, and on the lookup tables.
Abstract:
According to an aspect, a display device includes: sub-pixels arranged in row and column directions and each including a memory block including memories to store therein sub-pixel data; memory selection line groups corresponding to rows and each including memory selection lines electrically coupled to the memory blocks in the respective sub-pixels that belong to the corresponding row; and a memory selection circuit configured to concurrently output a memory selection signal to the memory selection line groups. Each sub-pixel displays an image based on the sub-pixel data stored in one of the memories in accordance with the memory selection line supplied with the memory selection signal. The number of times that the set value is changed is less than the number of times that images are switched from one to another based on the memory selection signal output from the memory selection circuit.
Abstract:
According to an aspect, a display device includes: sub-pixels arranged in row and column directions and each including a memory block including memories to store therein sub-pixel data; memory selection line groups corresponding to rows and each including memory selection lines electrically coupled to the memory blocks in the respective sub-pixels that belong to the corresponding row; and a memory selection circuit configured to concurrently output a memory selection signal to the memory selection line groups. Each sub-pixel displays an image based on the sub-pixel data stored in one of the memories in accordance with the memory selection line supplied with the memory selection signal. The number of times that the set value is changed is less than the number of times that images are switched from one to another based on the memory selection signal output from the memory selection circuit.
Abstract:
According to an aspect, the liquid crystal display device includes: an expansion coefficient determining unit that determines an expansion coefficient of each of partial areas based on a signal level of the first, the second, and the third colors; a luminance level determining unit that determines a luminance level of each partial area based on the signal level; a signal processing unit that uses the expansion coefficient to expand the signal level; and a light source control unit that controls brightness of a light source based on the expansion coefficient and the luminance level. The light source can change the brightness of the partial areas individually. The light source control unit controls the light source such that the brightness of the light source in a partial area having a luminance level equal to or higher than a predetermined threshold is higher than the brightness based on the expansion coefficient.
Abstract:
According to one embodiment, a light source device includes a plurality of light emitting elements including at least first and second light emitting elements, lightguide, first circuit, second circuit, and controller. The lightguide includes a first surface on which light from light emitting elements is incident and a second surface through which the light exits. The first circuit connects light emitting elements in series. The second circuit can bypass each of light emitting elements. The controller turns on light emitting elements using the first circuit if light emitting elements function normally, and if one of light emitting elements functions abnormally, the controller turns on the light emitting element functioning normally using the second circuit.
Abstract:
According to an aspect, a display device includes an image display panel; a planar light source including a light guide plate and an edge-lit light source that has light sources; and a controller. The controller sets luminance determination blocks by virtually dividing the image display panel in a light-source-arrangement-direction, identifies a luminance determination block with a highest luminance in the incidence direction, among luminance determination blocks at a same position in the light-source-arrangement-direction, identifies a luminance determination block the luminance of which is to be corrected by referring to luminance information of the light sources, and controls a light quantity of each of the light sources in such a manner that luminance of the identified luminance determination block is achieved.
Abstract:
A display device includes an array of sub-pixels, each of which include a memory to store sub-pixel data. The display device also includes a plurality of memory selection line groups respectively corresponding to the sub-pixel memories in rows of the array. The memory selection line groups are operated under control of a memory selection circuit, which outputs a memory selection signal based on a set value, thereby to perform sequential switching of memory selection lines. The sequential switching of the memory selection lines results in a sequential switching of the image being displayed.
Abstract:
A display device includes a display surface with pixels including four sub-pixels of four colors, and being arrayed in a matrix of a first viewing angle direction and a second viewing angle direction orthogonal thereto. The first viewing angle direction in a direction parallel to the display surface of a main viewing angle direction that intersects with the display surface. A reflective member, first substrate, a second substrate facing the first substrate, a color filter with filters of four colors corresponding to the four sub-pixels, and a scattering member is provided on the second substrate. For the color filter, a change in transmittance of the filters per pixel in the main viewing angle direction is smaller than a change in transmittance of the filters per pixel in a direction orthogonal to the first viewing angle direction in the second viewing angle direction parallel to the display surface.