Abstract:
The purpose is to realize a high definition liquid crystal display device having touch panel function. The concrete structure is: The first substrate comprising; a plurality of scanning lines and a plurality of video signal lines, a semiconductor layer, a pixel electrode, a common electrode formed in plural pixels in common, a through hole to connect the semiconductor layer and the pixel electrode, a plurality of common metal wirings, which are formed on the common electrode and formed along the video signal lines; wherein the common electrode has a slit extending in the same direction as the scanning line extends, a bridge wiring is formed over the common metal wiring interposed by an insulating film at the place where the common metal wiring and the slit cross to each other, the common metal wiring and the bridge wiring are electrically connected to the common electrode near the edges of the slit.
Abstract:
To improve the reliability of a liquid crystal display device, a liquid crystal display device includes a first substrate a second substrate opposing the first substrate, a liquid crystal layer arranged between the first and second substrates, and a sealing section arranged around the liquid crystal layer. The sealing section includes a member arranged around the liquid crystal layer and extending along an outer edge of the liquid crystal layer in a plan view and a sealing material arranged on both adjacent sides of the member and continuously surrounding a periphery of the liquid crystal layer in a plan view. Further, the first substrate has an oriented film formed on a back surface and a part of the sealing material overlaps a peripheral edge of the oriented film in a thickness direction on a side of the liquid crystal layer of the member.
Abstract:
To improve the reliability of a display device, a liquid crystal display device includes a substrate having a back surface, a substrate having a front surface opposing the back surface, a display functional layer arranged between the substrate and the substrate, and a sealing section SL that adhesively fixes the substrates around the display functional layer in a plan view. The sealing section SL includes a member PS extending along an outer edge of the display functional layer and sealing materials adjacently arranged on both sides of the member PS and continuously surrounding the periphery of the display functional layer in a plan view. The member PS includes a plurality of portions PS1 having a height TK1 and a plurality of portions PS2 arranged among the plurality of portions PS1 and having a height TK2 smaller than the height TK1.
Abstract:
A liquid crystal display device has a liquid crystal display panel that includes a thin-film transistor (TFT) substrate having pixels formed thereon in a matrix pattern and a counter substrate, the two substrates having liquid crystal sandwiched therebetween to constitute a display area having a periphery encircled by a frame area. The display area has a first axis and a second axis perpendicular to the first axis. The liquid crystal display panel is curved along the first axis. The gap between the TFT substrate and the counter substrate is determined by columnar spacers formed on the counter substrate in a manner corresponding to positions of a black matrix over the counter substrate. The center of each of the columnar spacers is displaced in the first axis direction from the center of each of the corresponding positions of the black matrix.
Abstract:
According to one embodiment, a display device includes a first substrate, a second substrate, and a connection member. The first substrate includes a pad portion. The second substrate includes a transparent conductive film located on an outer surface. The connection member electrically connects the pad portion and the transparent conductive film. The pad portion includes a second metal layer, a first organic insulating film having a first through hole penetrating to the second metal layer, a third metal layer being in contact with the second metal layer in the first through hole, and a second organic insulating film covering an end portion of the third metal layer and having a second through hole penetrating to the third metal layer.
Abstract:
According to one embodiment, a display device includes a first drain electrode, a first insulating film which is organic, a first metal electrode in contact with the first drain electrode in a first through-hole of the first insulating film, a second insulating film which is organic, a first transparent electrode in contact with the first metal electrode in a second through-hole of the second insulating film and formed of a transparent conductive material, a third insulating film which is inorganic, a pixel electrode in contact with the first transparent electrode in a third through-hole of the third insulating film and a metal wire located between the first insulating film and the second insulating film and formed of a material identical to that of the first metal electrode.
Abstract:
A display device has a frame region in a displaying region. The frame region includes a first scan line, and a first signal line and a second signal line adjacent to each other. The first signal line has a first wide section, and the first signal line intersects the first scan line at the first wide section in plan view. The first scan line has a second wide section. The second signal line has a pair of third wide sections, and the second signal line intersects the second wide section of the first scan line at the pair of third wide sections in plan view. The first wide section of the first signal line is opposite to the second signal line between the pair of third wide sections without being opposite to the pair of third wide sections.
Abstract:
A display device includes a pixel substrate in which a plurality of wirings and a plurality of switching elements are formed. The pixel substrate includes an organic insulating film formed over the substrate, a first wiring and a second wiring arranged in parallel on the organic insulating film, a trench formed in the organic insulating film between the first wiring and the second wiring, and a protection film formed to cover the first wiring, the second wiring, and the trench.
Abstract:
To improve the reliability of a liquid crystal display device, a liquid crystal display device includes a first substrate a second substrate opposing the first substrate, a liquid crystal layer arranged between the first and second substrates, and a sealing section arranged around the liquid crystal layer. The sealing section includes a member arranged around the liquid crystal layer and extending along an outer edge of the liquid crystal layer in a plan view and a sealing material arranged on both adjacent sides of the member and continuously surrounding a periphery of the liquid crystal layer in a plan view. Further, the first substrate has an oriented film formed on a back surface and a part of the sealing material overlaps a peripheral edge of the oriented film in a thickness direction on a side of the liquid crystal layer of the member.
Abstract:
According to one embodiment, a display device includes a switching element, a common electrode, an insulating film covering the common electrode, a first pixel electrode electrically connected to the switching element in a first contact hole penetrating the insulating film, and a transparent conductive film electrically connected to the common electrode in a second contact hole penetrating the insulating film. The first pixel electrode and the transparent conductive film are arranged in a first direction in a same layer. A size of the first contact hole and a size of the second contact hole are different from each other in planar view.