Abstract:
A display device includes a substrate, a display region in which a plurality of pixels are provided on the substrate and that has a first side, a second side, a third side, a fourth side, and a plurality of curved portions, a peripheral region located between an end portion of the substrate and the display region, a plurality of scan lines extending in a first direction, a plurality of signal lines extending in a second direction, at least one gate driver arranged in the peripheral region and coupled to the scan lines, a signal line coupling circuit arranged in the peripheral region and coupled to the signal lines, a plurality of terminals aligned in the peripheral region, and a plurality of wiring lines coupling the terminals and the signal line coupling circuit.
Abstract:
A multiple circuit board includes a board having a plurality of product regions respectively corresponding to a plurality of array boards and an out-of-product region, out-of-product wires provided in the out-of-product region, waveform wires electrically connected to the out-of-product wires and extending to depict waveforms to alternately pass inside and outside of the respective product regions, circuit elements provided in respective display regions of the plurality of product regions, scanning circuits provided adjacent to the respective display regions of the plurality of product regions, and a plurality of scanning lines extending from the scanning circuits to both sides in each of the product regions and connecting to the circuit elements at one side and connecting to the waveform wires inside the product region at the other side.
Abstract:
This invention aims at reducing the probability of short-circuiting between terminals in a display device in which an IC driver is connected by COG. Terminals for connection with the IC driver are formed in a terminal region of a TFT substrate. The terminals are each comprised of a terminal metal, a first through-hole formed in a first insulation film, a second through-hole formed in a second insulation film, a first ITO formed in the first through-hole and being in contact with the terminal metal, and a second ITO formed over the first ITO. The second ITO is formed within an area where the second ITO is in contact with the first ITO but is not formed outside the second through-hole. This ensures that the distance between the ITOs of the adjacent terminals can be enlarged, whereby the probability of short-circuiting between the terminals can be lowered.
Abstract:
An inspection circuit is properly protected in a display device, which the driver IC is not on the terminal area. A liquid crystal display device comprising a TFT substrate having a display area, in which video signal lines are formed, and a terminal area; a counter substrate overlapping with the display area of the TFT substrate; the counter substrate and the TFT substrate are adhered by the seal material, the display area is formed in an area surrounded by the seal material; wherein the flexible wiring circuit substrate connects to the terminal area, the driver IC, which supplies video signals to the video signal lines, is not installed in the terminal area, the inspection circuit is formed between the display area and the terminal area, wherein the inspection circuit overlaps with the counter substrate in a plan view.
Abstract:
An object of the present invention is to protect exposed inspection pads with a conductive tape when the application of resin is ceased and to enhance the reliability of the inspection pads. A liquid crystal display device is provided with a transparent electrode formed on a superficial side of a CF board, a grounded electrode, an inspection pad and a switching device between the inspection pad and a signal line or a scanning line respectively formed in a terminal area a TFT board and a conductive tape that electrically connects the transparent electrode of the CF board, the grounded electrode and the inspection pad respectively of the TFT board.
Abstract:
This invention envisages flexible wiring substrate terminals serving to connect with the wires for preventing dielectric breakdown caused by static electricity during the manufacturing process, and reducing the number of the flexible wiring substrate terminals. On a mother TFT substrate, signal lines extend over each liquid crystal cell in a manner flanking a scribe line between the adjacent liquid crystal cells. The signal lines of each liquid crystal cell are connected with connecting lines striding the scribe line. This reduces the number of static electricity countermeasure wires extending from the flexible wiring substrate terminals of each liquid crystal cell. Once completed, the individual liquid crystal cells are separated from one another, with no adverse effects caused by the connecting lines.
Abstract:
An object of the present invention is to protect exposed inspection pads with a conductive tape when the application of resin is ceased and to enhance the reliability of the inspection pads. A liquid crystal display device is provided with a transparent electrode formed on a superficial side of a CF board, a grounded electrode, an inspection pad and a switching device between the inspection pad and a signal line or a scanning line respectively formed in a terminal area a TFT board and a conductive tape that electrically connects the transparent electrode of the CF board, the grounded electrode and the inspection pad respectively of the TFT board.
Abstract:
An inspection circuit is properly protected in a display device, which the driver IC is not on the terminal area. A liquid crystal display device comprising a TFT substrate having a display area, in which video signal lines are formed, and a terminal area; a counter substrate overlapping with the display area of the TFT substrate; the counter substrate and the TFT substrate are adhered by the seal material, the display area is formed in an area surrounded by the seal material; wherein the flexible wiring circuit substrate connects to the terminal area, the driver IC, which supplies video signals to the video signal lines, is not installed in the terminal area, the inspection circuit is formed between the display area and the terminal area, wherein the inspection circuit overlaps with the counter substrate in a plan view.
Abstract:
An inspection circuit is properly protected in a display device, which the driver IC is not on the terminal area. A liquid crystal display device comprising a TFT substrate having a display area, in which video signal lines are formed, and a terminal area; a counter substrate overlapping with the display area of the TFT substrate; the counter substrate and the TFT substrate are adhered by the seal material, the display area is formed in an area surrounded by the seal material; wherein the flexible wiring circuit substrate connects to the terminal area, the driver IC, which supplies video signals to the video signal lines, is not installed in the terminal area, the inspection circuit is formed between the display area and the terminal area, wherein the inspection circuit overlaps with the counter substrate in a plan view.
Abstract:
It is possible to reduce a size of a lower frame region to ensure a wiring corrosion margin equivalent to that of a conventional technique. In a display device, a video signal wiring arranged in the lower frame region includes, in a region between a terminal section (terminal) and a video signal line, a first wiring formed on a first wiring layer and having one end connected to the terminal section to which a video signal line driving circuit is connected, a second wiring formed on a second wiring layer different from the first wiring layer and having one end connected to the other end of the first wiring, and a third wiring formed on the first wiring layer and having one end connected to the other end of the second wiring. The other end of the third wiring is connected to the video signal line via a fourth wiring formed on the second wiring layer, and the first wiring layer is formed on the side closer to an array substrate than to the second wiring layer.