Abstract:
A display device includes a display surface with pixels including four sub-pixels of four colors, and being arrayed in a matrix of a first viewing angle direction and a second viewing angle direction orthogonal thereto. The first viewing angle direction in a direction parallel to the display surface of a main viewing angle direction that intersects with the display surface. A reflective member, first substrate, a second substrate facing the first substrate, a color filter with filters of four colors corresponding to the four sub-pixels, and a scattering member is provided on the second substrate. For the color filter, a change in transmittance of the filters per pixel in the main viewing angle direction is smaller than a change in transmittance of the filters per pixel in a direction orthogonal to the first viewing angle direction in the second viewing angle direction parallel to the display surface.
Abstract:
According to an aspect, a reflective liquid-crystal display device includes a liquid-crystal panel and a front light unit. The liquid-crystal panel includes a sheet-like anisotropic scattering member having low refractive index areas and high refractive index areas with a refractive index higher than that of the low refractive index areas. The front light unit includes a light guide plate laminated on the liquid-crystal panel and having a number of grooves formed on a surface facing the liquid-crystal panel at a pitch of equal to or smaller than 100 □m and a light source that makes light incident on the light guide plate. An arrangement interval of the unit pixels is larger than an average of an arrangement interval of the high refractive index area of the anisotropic scattering member.
Abstract:
According to an aspect, a reflective liquid-crystal display device includes a liquid-crystal panel and a front light unit. The liquid-crystal panel includes a sheet-like anisotropic scattering member having low refractive index areas and high refractive index areas with a refractive index higher than that of the low refractive index areas. The front light unit includes a light guide plate laminated on the liquid-crystal panel and having a number of grooves formed on a surface facing the liquid-crystal panel at a pitch of equal to or smaller than 100 □m and a light source that makes light incident on the light guide plate. An arrangement interval of the unit pixels is larger than an average of an arrangement interval of the high refractive index area of the anisotropic scattering member.
Abstract:
A reflective liquid crystal display device includes a first substrate provided with a reflective electrode, a second substrate provided with a transparent electrode, a liquid crystal layer disposed between the first substrate and the second substrate, and an anisotropic scattering member formed on the second substrate. The anisotropic scattering member has first and second surfaces each including a first refractive index region and a second refractive index region having a refractive index different from that of the first refractive index region. A refractive index difference between the first refractive index region and the second refractive index region in the first surface is larger than that in the second surface. The anisotropic scattering member is disposed so that light enters from the first surface thereof and the light exits as scattered light from the second surface thereof. A phase difference is given to the light entered the anisotropic scattering member.
Abstract:
A liquid crystal display device includes a first substrate provided with a reflective electrode, a second substrate provided with a transparent electrode oppositely disposed to the reflective electrode, a liquid crystal layer disposed between the first second substrates, a polarization plate oppositely disposed to the first substrate with an interposition of the second substrate, and an anisotropic scattering member disposed between the second substrate and the polarization plate. A main view angle direction is set as a predetermined direction intersecting a display surface. The anisotropic scattering member has a scattering center and scatters light traveling along a scattering axis direction which is a direction having a predetermined angle range centered around the scattering center. The scattering axis direction coincides with the main view angle direction.
Abstract:
According to an aspect, a display device includes: a display surface on which pixels each including sub-pixels of a plurality of colors are two-dimensionally arrayed; a reflective member; a first substrate provided with the reflective member; a second substrate arranged to face the first substrate; a color filter provided with filters of at least two colors corresponding to the sub-pixels; and a scattering member provided on the second substrate. A main viewing angle direction of the display device is a direction intersecting with the display surface. The color filter is formed such that a change in transmittance of the filters per pixel in the main viewing angle direction is smaller than a change in transmittance of the filters per pixel in a direction orthogonal to the main viewing angle direction in a direction parallel to the display surface.
Abstract:
A reflective liquid crystal display device includes a first substrate provided with a reflective electrode, a second substrate provided with a transparent electrode, a liquid crystal layer disposed between the first substrate and the second substrate, and an anisotropic scattering member formed on the second substrate. The anisotropic scattering member has first and second surfaces each including a first refractive index region and a second refractive index region having a refractive index different from that of the first refractive index region. A refractive index difference between the first refractive index region and the second refractive index region in the first surface is larger than that in the second surface. The anisotropic scattering member is disposed so that light enters from the first surface thereof and the light exits as scattered light from the second surface thereof. A phase difference is given to the light entered the anisotropic scattering member.
Abstract:
A display device includes a reflective image display unit having a sheet-like anisotropic scattering member. The sheet-like anisotropic scattering member has a surface in which both a low refractive index area and a high refractive index area exist. The sheet-like anisotropic scattering member is disposed so that a light enters from a first surface thereof and exits as scattered light from a second surface thereof, when an extent of refractive index difference at a boundary or vicinity thereof between the low refractive index area and the high refractive index area is relatively large in the first surface and relatively small in the second surface.
Abstract:
According to one embodiment, an electronic device includes a display panel, an antenna wiring substrate opposed to the display panel and including an antenna wiring line forming an antenna and a signal wiring line provided on the antenna wiring substrate and supplying a drive signal to the display panel.
Abstract:
A display device includes a reflective image display unit having a sheet-like anisotropic scattering member. The sheet-like anisotropic scattering member has a surface in which both a low refractive index area and a high refractive index area exist. The sheet-like anisotropic scattering member is disposed so that a light enters from a first surface thereof and exits as scattered light from a second surface thereof, when an extent of refractive index difference at a boundary or vicinity thereof between the low refractive index area and the high refractive index area is relatively large in the first surface and relatively small in the second surface.