摘要:
A vehicle safety system (20) includes a controller (24) that verifies the plausibility of a roll angle indication obtained by processing a roll angular rate sensor (26) output. The controller (24) determines whether an acceleration value corresponding to the roll angle indication is within an expected range. In a disclosed example, the controller (24) utilizes a vertical acceleration value and a first expected range and a lateral acceleration value and a second expected range. When both of the acceleration values are outside of the respective expected range, the controller determines that the roll angle indication is invalid.
摘要:
A method and system for determining weight and/or position of a vehicle seat occupant to be used for controlling the reaction of a safety restraint system. A plurality of spaced weight sensors are disposed between a seating surface and seat mounting surface to provide output signals indicative of an applied weight on each sensor. The sensors are spaced such that the sensors measure the weight applied to a seat back and the seating surface. A controller calculates the weight and/or position of the seat occupant in response to the output signals of the sensors. The controller sends the weight and position of the seat occupant to the safety restraint system to be used to tailor or suppress the reaction of the safety restraint system.
摘要:
An airbag deployment circuit includes at single current regulator controlling multiple squib deployment circuits. Squib deployment circuits that do not have to deploy simultaneously are attached to the same current regulator. A current regulation switch located prior to each current regulator is closed if any of the squib deployment circuits attached to the associated current regulator need to be deployed in a crash event. A high side transistor switch and a low side transistor switch are located adjacent each squib to control activation of that squib deployment circuit. The high side transistor switch and the low side transistor switch are also closed for each of the squib deployment circuits that are to be deployed.
摘要:
A method and system for determining weight and/or position of a vehicle seat occupant to be used for controlling the reaction of a safety restraint system. A plurality of spaced weight sensors are disposed between a seating surface and seat mounting surface to provide output signals indicative of an applied weight on each sensor. The sensors are spaced such that the sensors measure the weight applied to a seat back and the seating surface. A controller calculates the weight and/or position of the seat occupant in response to the output signals of the sensors. The controller sends the weight and position of the seat occupant to the safety restraint system to be used to tailor or suppress the reaction of the safety restraint system.
摘要:
A method and system for determining weight and/or position of a vehicle seat occupant to be used for controlling the reaction of a safety restraint system. A plurality of spaced weight sensors are disposed between a seating surface and seat mounting surface to provide output signals indicative of an applied weight on each sensor. The sensors are spaced such that the sensors measure the weight applied to a seat back and the seating surface. A controller calculates the weight and/or position of the seat occupant in response to the output signals of the sensors. The controller sends the weight and position of the seat occupant to the safety restraint system to be used to tailor or suppress the reaction of the safety restraint system.
摘要:
A vehicle weight classification system determines the weight of a seat occupant for controlling airbag deployment. Strain gauge sensors preferably provide signals having a magnitude that is indicative of the weight of the seat occupant. A converting module converts the sensor signals into timing information. A microprocessor, which includes a timer module, receives the timing information and makes a weight determination from the timing information.
摘要:
A method and system for determining weight and/or position of a vehicle seat occupant to be used for controlling the reaction of a safety restraint system. A plurality of spaced weight sensors are disposed between a seating surface and seat mounting surface to provide output signals indicative of an applied weight on each sensor. The sensors are spaced such that the sensors measure the weight applied to a seat back and the seating surface. A controller calculates the weight and/or position of the seat occupant in response to the output signals of the sensors. The controller sends the weight and position of the seat occupant to the safety restraint system to be used to tailor or suppress the reaction of the safety restraint system.
摘要:
A method and system for controlling a vehicle occupant safety system based on crash severity. The system uses an acceleration signal indicating the acceleration of the vehicle upon occurrence of a crash to determine whether to trigger a restraint device. A controller implements a crash sensing algorithm to determine whether the severity of the crash warrants deployment of the safety restraint. The algorithm uses a predicted velocity and an acceleration peak time derived from the acceleration signal. The predicted velocity is indicative of the relative velocity between the passenger and the vehicle at a predetermined time following detection of a crash event. The acceleration peak time is the time period between peak acceleration values that correspond to contacting of significant structural elements of the vehicle, such as the bumper and the radiator. The two values are compared to their respective thresholds and if both of them exceed their thresholds then a deployment signal is generated to trigger the safety restraint.
摘要:
A vehicle weight classification system recognizes the various factors that influence system performance. Some of the factors are compensated for using analog signal processing circuitry or techniques. Other factors are compensated for using digital signal processing techniques. The unique combination of analog and digital approaches, rather than pure analog or pure digital, provides an effective solution at addressing the various factors that influence signals and system performance in a vehicle weight classification system while keeping the cost and complexity of the system within acceptable limits.
摘要:
A method and system for determining weight and/or position of a vehicle seat occupant to be used for controlling the reaction of a safety restraint system. A plurality of spaced weight sensors are disposed between a seating surface and seat mounting surface to provide output signals indicative of an applied weight on each sensor. The sensors are spaced such that the sensors measure the weight applied to a seat back and the seating surface. A controller calculates the weight and/or position of the seat occupant in response to the output signals of the sensors. The controller sends the weight and position of the seat occupant to the safety restraint system to be used to tailor or suppress the reaction of the safety restraint system.