摘要:
An integrated lead disk drive suspension including a load beam and one or more conductive leads. The load beam has a mounting region on a proximal end, a head bonding platform on a distal end, and one or more spring regions connecting the head bonding platform to the mounting region. The conductive leads are integrated with and insulated from the load beam by an adhesive dielectric layer, and extend between the head bonding platform and the mounting region. The leads are adapted to reduce mechanical effects of the leads and/or dielectric layer on spring characteristics of the spring regions. One embodiment of the leads includes at least a first compensating portion which extends off the load beam and traverses a nonlinear path around at least a portion of one or more of the spring regions. In another embodiment the portions of the conductive leads extending between the distal end of the load beam and the head bonding platform are substantially free from the dielectric layer. In yet another embodiment the width of portions of the dielectric layer is about equal to or less than the width of adjacent portions of the conductive leads.
摘要:
Laminate structures for attachment to a head suspension assembly in a hard disk drive. The laminate structures include a spring metal layer, a conductive layer, and an intermediate insulator/adhesive layer. The conductive layer can act as an interconnect assembly, as a gimbal, and as a spring region. The method of manufacture of the laminate structures incorporates manufacture of an interconnect assembly into the manufacture of spring structures such as a load beam or a gimbal. The laminate structures are manufactured by etching the layers from the outside in, using other layers as etching masks. Unique configurations are possible where either or both metal layers can be discontinuous, thanks to the manufacturing support of the second layer. The second layer can also be shaped into a plurality of panels, thus freeing the metal layers to act as the spring elements.
摘要:
Laminate structures for attachment to a head suspension assembly in a hard disk drive. The laminate structures include a spring metal layer, a conductive layer, and an intermediate insulator/adhesive layer. The conductive layer can act as an interconnect assembly, as a gimbal, and as a spring region. The method of manufacture of the laminate structures incorporates manufacture of an interconnect assembly into the manufacture of spring structures such as a load beam or a gimbal. The laminate structures are manufactured by etching the layers from the outside in, using other layers as etching masks. Unique configurations are possible where either or both metal layers can be discontinuous, thanks to the manufacturing support of the second layer. The second layer can also be shaped into a plurality of panels, thus freeing the metal layers to act as the spring elements.
摘要:
A gimbal flexure and electrical interconnect assembly for attachment to a disk drive suspension assembly. The gimbal flexure and electrical interconnect acts both as an interconnect system for relaying electrical signals and as a gimbal flexure. It comprises a self-supporting set of generally parallel traces--electrically insulated linear substrate-free conductors constructed of a single layer spring material. The set of traces includes a load beam portion extending over and matching the surface topology of at least a section of the first surface of a load beam, and a gimbal portion located at a distal end of the set of traces shaped as a gimbal flexure means. The invention describes specific embodiments, including head harnesses, suspension assemblies, and head suspension assemblies, as well as manufacturing methods.
摘要:
A trace interconnect assembly designed for transmitting electrical signals to and from a head assembly in a hard disk drive is disclosed. The interconnect assembly includes one or more single-layer thin, elongated, and generally flat substrate-free trace interconnects. The trace interconnects are new conductors etched out of a planar length of preferably a high tensile and high yield strength metal such as beryllium copper. They are shaped to match the surface topology of the suspension assembly. Trace interconnects have a rigid region and flexible regions that match a rigid region and flexible regions in the suspension assembly. Different additional elements include support braces, standoffs, trace tangs, bond pads, and stacked interconnects. Coupling a head assembly to the interconnect assembly creates a head interconnect harness. Methods of manufacture for the trace interconnect assembly, a multi-conductor stacked version, a head suspension assembly, and the head interconnect harness are disclosed.
摘要:
A trace interconnect assembly for transmitting electrical signals to and from a head assembly in a hard disk drive. The interconnect assembly includes one or more single-layer thin, elongated, and generally flat substrate-free trace interconnects. The trace interconnects are new conductors etched out of a planar length of preferably a high tensile and high yield strength metal such as beryllium copper. They are shaped to match the surface topology of the suspension assembly. Trace interconnects have a rigid region and flexible regions that match a rigid region and flexible regions in the suspension assembly. Different additional elements include support braces, standoffs, trace tangs, bond pads, and stacked interconnects. Coupling a head assembly to the interconnect assembly creates a head interconnect harness. Methods of manufacture for the trace interconnect assembly, a multi-conductor stacked version, a head suspension assembly, and the head interconnect harness are disclosed.
摘要:
A trace interconnect assembly is designed for transmitting electrical signals to and from a head assembly in a hard disk drive. The interconnect assembly includes one or more single-layer thin, elongated, and generally flat substrate-free trace interconnects. The trace interconnects are new conductors etched out of a planar length of preferably a high tensile and high yield strength metal such as beryllium copper. They are shaped to match the surface topology of the suspension assembly. Trace interconnects have a rigid region and flexible regions that match a rigid region and flexible regions in the suspension assembly. Different additional elements include support braces, standoffs, trace tangs, bond pads, and stacked interconnects. Coupling a head assembly to the interconnect assembly creates a head interconnect harness. Methods of manufacture for the trace interconnect assembly, a multi-conductor stacked version, a head suspension assembly, and the head interconnect harness are disclosed.
摘要:
A method for manufacturing a head suspension including separately manufacturing a load beam and a set of traces. The traces are formed from a sheet of conductive material and include an elongated conductor portion and a gimbal portion. Portions of the traces which are configured to be mounted to the load beam are coated with dielectric before being mounted to the load beam. The gimbal portion of the traces provides both mechanical and electrical connections to the conductor portion.
摘要:
A head suspension assembly for positioning a head assembly at the correct static attitude with respect to the surface of a rotatable data storage device. The head assembly includes a gimbal assembly having a novel static attitude adjustment feature comprising a solid drop of material. The solid drop of material is dispensed as a fluid on the desired location and then cured to solid form. The solidified drop of material can be used to create surface features on head suspension assemblies for correcting pitch and roll static attitude errors and for applying gram loads on the head assembly.
摘要:
An improved method of cutting a pattern in a hollow, tubular workpiece to form a stent or the like involves the use of a novel workpiece fixture. The workpiece fixture is rigidly carried on a laser cutting tool to support a long piece of stock tubing in a cantilever manner beneath the laser beam of the cutting tool. The fixture is spaced from the laser beam by a distance which is in a range of approximately the same as to slightly greater than the length of any axial repeat in the pattern. The laser beam cuts the pattern in the stock tubing piece as the stock tubing is advanced past the laser beam. Accuracy is increased because the workpiece fixture is carried on the laser cutting tool, and because the cutting takes place in a zone that is close to the end of the fixture and the cantilever support provided thereby.