摘要:
In sophisticated semiconductor devices, at least a portion of the interlayer dielectric material of the contact level may be provided in the form of a low-k dielectric material which may, in some illustrative embodiments, be accomplished on the basis of a replacement gate approach. Hence, superior electrical performance, for instance with respect to the parasitic capacitance, may be accomplished.
摘要:
In complex semiconductor devices, sophisticated ULK materials may be used in metal line layers in combination with a via layer of enhanced mechanical stability by increasing the amount of dielectric material of superior mechanical strength. Due to the superior mechanical stability of the via layers, reflow processes for directly connecting the semiconductor die and a package substrate may be performed on the basis of a lead-free material system without unduly increasing yield losses.
摘要:
In complex semiconductor devices, sophisticated ULK materials may be used in metal line layers in combination with a via layer of enhanced mechanical stability by increasing the amount of dielectric material of superior mechanical strength. Due to the superior mechanical stability of the via layers, reflow processes for directly connecting the semiconductor die and a package substrate may be performed on the basis of a lead-free material system without unduly increasing yield losses.
摘要:
In sophisticated semiconductor devices, superior contact resistivity may be accomplished for a given contact configuration by providing hybrid contact elements, at least a portion of which may be comprised of a highly conductive material, such as copper. To this end, a well-established contact material, such as tungsten, may be used as buffer material in order to preserve integrity of sensitive device areas upon depositing the highly conductive metal.
摘要:
In sophisticated semiconductor devices, superior contact resistivity may be accomplished for a given contact configuration by providing hybrid contact elements, at least a portion of which may be comprised of a highly conductive material, such as copper. To this end, a well-established contact material, such as tungsten, may be used as buffer material in order to preserve integrity of sensitive device areas upon depositing the highly conductive metal.
摘要:
Disclosed herein are various methods of forming conductive structures, such as conductive lines and vias, using a dual metal hard mask integration technique. In one example, the method includes forming a first layer of insulating material, forming a first patterned metal hard mask layer above the first layer of insulating material, forming a second patterned metal hard mask layer above the first patterned metal hard mask layer, performing at least one etching process through both of the second patterned metal hard mask layer and the first patterned metal hard mask layer to define a trench in the first layer of insulating material and forming a conductive structure in the trench.
摘要:
Disclosed herein are various methods of forming conductive structures, such as conductive lines and vias, using a dual metal hard mask integration technique. In one example, the method includes forming a first layer of insulating material, forming a first patterned metal hard mask layer above the first layer of insulating material, forming a second patterned metal hard mask layer above the first patterned metal hard mask layer, performing at least one etching process through both of the second patterned metal hard mask layer and the first patterned metal hard mask layer to define a trench in the first layer of insulating material and forming a conductive structure in the trench.
摘要:
In sophisticated semiconductor devices, the contact elements connecting to active semiconductor regions having formed thereabove closely spaced gate electrode structures may be provided on the basis of a liner material so as to reduce the lateral width of the contact opening, while, on the other hand, non-critical contact elements may be formed on the basis of non-reduced lateral dimensions. To this end, at least a first portion of the critical contact element is formed and provided with a liner material prior to forming the non-critical contact element.
摘要:
Methods are provided for fabricating integrated circuits that include forming first and second spaced apart gate structures overlying a semiconductor substrate, and forming first and second spaced apart source/drain regions in the semiconductor substrate between the gate structures. A first layer of insulating material is deposited overlying the gate structures and the source/drain regions by a process of atomic layer deposition, and a second layer of insulating material is deposited overlying the first layer by a process of chemical vapor deposition. First and second openings are etched through the second layer and the first layer to expose portions of the source/drain regions. The first and second openings are filled with conductive material to form first and second spaced apart contacts, electrically isolated from each other, in electrical contact with the first and second source/drain regions.
摘要:
In sophisticated semiconductor devices, the contact elements connecting to active semiconductor regions having formed thereabove closely spaced gate electrode structures may be provided on the basis of a liner material so as to reduce the lateral width of the contact opening, while, on the other hand, non-critical contact elements may be formed on the basis of non-reduced lateral dimensions. To this end, at least a first portion of the critical contact element is formed and provided with a liner material prior to forming the non-critical contact element.