Abstract:
A liquid crystal display device includes a liquid crystal display panel, a light source having red, green and blue light emitting devices for supplying light to the liquid crystal display panel, the light source being divided into a plurality of regions, and a driving unit for separately driving red, green and blue light emitting devices in each region.
Abstract:
A backlight unit having a decreased thickness includes at least one lamp which emits light; and at least one light-diffusion plate which diffuses the light emitted from the light, and is positioned above each lamp, wherein the lamp and the light-diffusion plate are fixed and supported by a lamp guide.
Abstract:
A backlight unit having a decreased thickness includes at least one lamp which emits light; and at least one light-diffusion plate which diffuses the light emitted from the light, and is positioned above each lamp, wherein the lamp and the light-diffusion plate are fixed and supported by a lamp guide.
Abstract:
An external electrode fluorescent lamp and its fabrication method are disclosed. The method for fabricating the external electrode fluorescent lamp includes providing a cylindrical glass tube having a phosphor layer coated at its inner circumferential surface, a discharge gas injected therein and sealed at its ends, forming external electrodes at both end portions of the glass tube, and forming insulation films for sealing the external electrodes each insulation film having an opening exposing a portion of the corresponding external electrode.
Abstract:
A back-light apparatus for a display includes: a plurality of light emitting diodes attached on a substrate; a first common line mounted on the substrate to commonly connect first electrodes of the light emitting diodes; a second common line mounted on the substrate to commonly connect second electrodes of the light emitting diodes; a plurality of third lines connected to preceding second electrodes of the light emitting diodes and succeeding first electrodes of the light emitting diodes; first and second selection switches disconnecting the first common line and the second common line so that the light emitting diodes are connected in parallel; third selection switches for disconnecting the third lines so that the light emitting diodes are connected in series; a power unit to supply power to the light emitting diodes; and a control unit to control the first, second and third selection switches for the light emitting diodes.
Abstract:
A back-light apparatus for a display includes: a plurality of light emitting diodes attached on a substrate; a first common line mounted on the substrate to commonly connect first electrodes of the light emitting diodes; a second common line mounted on the substrate to commonly connect second electrodes of the light emitting diodes; a plurality of third lines connected to preceding second electrodes of the light emitting diodes and succeeding first electrodes of the light emitting diodes; first and second selection switches disconnecting the first common line and the second common line so that the light emitting diodes are connected in parallel; third selection switches for disconnecting the third lines so that the light emitting diodes are connected in series; a power unit to supply power to the light emitting diodes; and a control unit to control the first, second and third selection switches for the light emitting diodes.
Abstract:
An external electrode fluorescent lamp and its fabrication method are disclosed. The method for fabricating the external electrode fluorescent lamp includes providing a cylindrical glass tube having a phosphor layer coated at its inner circumferential surface, a discharge gas injected therein and sealed at its ends, forming external electrodes at both end portions of the glass tube, and forming insulation films for sealing the external electrodes each insulation film having an opening exposing a portion of the corresponding external electrode.
Abstract:
A flat type fluorescent lamp can include supporters between a first substrate and a light-scattering means. The flat type fluorescent lamp can also include first and second substrates, a light-emitting layer disposed between the first and second substrates, a plurality of supporters selectively arranged on the first substrate, and a light-scattering layer placed above the plurality of supporters, wherein the light-scattering layer is spaced a distance from the first substrate.