摘要:
A flat display panel includes a first substrate, a second substrate opposite to the first substrate, a sealant disposed between the first and second substrates. The sealant, the edge of the inner surface of the first substrate, and the edge of the inner surface of the second substrate form a space, and the flat display panel further includes a protection layer disposed inside the space so as to reinforce the structural strength of the flat display panel.
摘要:
A flat display panel includes a first substrate, a second substrate opposite to the first substrate, a sealant disposed between the first and second substrates. The sealant, the edge of the inner surface of the first substrate, and the edge of the inner surface of the second substrate form a space, and the flat display panel further includes a protection layer disposed inside the space so as to reinforce the structural strength of the flat display panel.
摘要:
A thinned substrate for a display panel and manufacturing process thereof are provided. The thinned substrate includes an inorganic transparent plate and a supporting layer to form a stacked layer. The supporting layer avails improvement of structure strength of the thinned substrate and reliability of the thinned substrate. A ratio between thickness of the inorganic transparent plate and thickness of the supporting layer is substantially less than or substantially equal to 4. A total thickness of the stacked layer is substantially less than or substantially equal to 20 mm. Bending strength of the stacked layer is substantially greater than or substantially equal to 150 MPa. Besides, a manufacturing process of the display panel applying said thinned substrate is also provided.
摘要:
The present invention provides a method for manufacturing display panel with substrates having different thickness. The display panel manufacturing method includes assembling a first substrate and a second substrate, positioning the anti-etching layer on the outer surface of the first substrate and etching the substrates at the first etching process. Because the anti-etching layer is disposed on the first substrate, the first substrate is protected by the anti-etching layer from being etched or later etched. Simultaneously, the second substrate is etched to reduce its thickness in order to adjust the thickness difference between the first substrate and the second substrate.
摘要:
A first etching stop layer and an active layer are formed on an inner surface of a first glass substrate, and a second etching stop layer and a cover layer are formed on an inner surface of a second glass substrate. A display media is formed between the first glass substrate and the second glass substrate. A first passivation layer is formed on an outer surface of the second glass substrate. A first etching process is performed to expose the first etching stop layer. A first flexible substrate is formed on the exposed first etching stop layer, and a second passivation layer is formed on the first flexible substrate. The first passivation layer is removed. A second etching process is performed to expose the second etching stop layer. A second flexible substrate is formed on the exposed second etching stop layer, and the second passivation layer is removed.
摘要:
A first etching stop layer and an active layer are formed on an inner surface of a first glass substrate, and a second etching stop layer and a cover layer are formed on an inner surface of a second glass substrate. A display media is formed between the first glass substrate and the second glass substrate. A first passivation layer is formed on an outer surface of the second glass substrate. A first etching process is performed to expose the first etching stop layer. A first flexible substrate is formed on the exposed first etching stop layer, and a second passivation layer is formed on the first flexible substrate. The first passivation layer is removed. A second etching process is performed to expose the second etching stop layer. A second flexible substrate is formed on the exposed second etching stop layer, and the second passivation layer is removed.
摘要:
A first etching stop layer and an active layer are formed on an inner surface of a first glass substrate, and a second etching stop layer and a cover layer are formed on an inner surface of a second glass substrate. A display media is formed between the first glass substrate and the second glass substrate. A first passivation layer is formed on an outer surface of the second glass substrate. A first etching process is performed to expose the first etching stop layer. A first flexible substrate is formed on the exposed first etching stop layer, and a second passivation layer is formed on the first flexible substrate. The first passivation layer is removed. A second etching process is performed to expose the second etching stop layer. A second flexible substrate is formed on the exposed second etching stop layer, and the second passivation layer is removed.
摘要:
A photosensitive monomer of formula. “L1”, “L2”, “L3”, “L4”, “L5”, “L6” are selected from hydrogen, fluorine, chlorine, cyano, alkyl, alkylcarbonyl, alkoxycarbonyl, and alkylcarbonyloxy having 1 to 7 carbon atoms, in which one or more hydrogen atoms may be substituted by fluorine or chlorine.“R1”, “R2”, “R3” and “R4” are selected from hydrogen, fluorine, chlorine, cyano, thiocyanato, pentafluoro sulfanyl, nitrite, straight-chained alkyl/branched alkyl, and a “Z-Sp-P” group. At least one of “R1”, “R2”, “R3” and “R4” is “Z-Sp-P” group. “Z” is selected from oxygen, sulfur, methyoxy, carbonyl, caroboxyl, carbamoyl, methylthio, ethenylcarbonyl, carbonylethenyl, and a single bond. “Sp” is selected from straight-chained alkyl or branched alkyl and a single bond. “P” comprises a polymerizable group.
摘要:
A multi-domain liquid crystal display (LCD) including an active device array substrate, an opposite substrate, an electric field shielding layer, and a liquid crystal layer is provided. The active device array substrate has a plurality of pixels, wherein each pixel has a pixel electrode. The opposite substrate has a common electrode disposed between the opposite substrate and the active device array substrate. The electric field shielding layer is disposed on a part of each pixel electrode. The liquid crystal layer is disposed between the active device array substrate and the opposite substrate. The liquid crystal layer corresponding to each pixel is divided into a low-voltage domain and a high-voltage domain having the same cell gap, wherein the position of the electric field shielding layer is corresponding to the position of the low-voltage domain. Color shift of the multi-domain LCD is improved effectively at oblique viewing angles.
摘要:
A liquid crystal display panel includes a display region, a periphery circuit region, a joint obligate region, a plurality of first test thin-film transistors (TFTs), a plurality of second TFTs, a plurality of first lines, a plurality of second lines, a blank region, and at least one first adjustment TFT. The first and second test TFTs are disposed on the joint obligate region according to a regular distance. Each of the first and second test TFTs has a transistor width. The first adjustment TFT is disposed on the blank region. The width of the blank region is not smaller than the sum of the twice regular distance and the transistor width. Thereby, the present invention can prevent the band mura of the liquid crystal display panel effectively when the liquid crystal display panel is in testing.