摘要:
A water detection device comprising at least one fuel cell comprising a first electrode, a layer of electrolyte, a second electrode and an electrical measurement device characterized in that the first electrode of the cell is in contact with a first face of a porous silicon substrate comprising Si—H bonds, in such a manner as to liberate a flow of hydrogen in the presence of water. Advantageously, the substrate of porous silicon is incorporated into a first housing permeable to water, the fuel cell being incorporated into a second housing said second housing being impermeable to water and permeable to oxygen.
摘要:
The fuel cell includes an anode chamber having a hydrogen inlet emerging into it. A wall separating the inside of the anode chamber from the outside thereof includes a main region having a first thermal conduction resistance between the outside and the inside of the anode chamber, and a region for promoting the condensation of water having a second thermal conduction resistance between the outside and the inside of the anode chamber strictly smaller than the first thermal conduction resistance so as to delimit a water condensation surface within the anode chamber. A channel for removing the condensed water connects the condensation area to the outside of the anode chamber.
摘要:
Adjacent elementary cells are connected in series by connecting elements, each of which is arranged in an interconnection area. The connecting elements are separated from the respective electrolytic membranes of the two adjacent cells to be connected thereby. In this way, they are never in contact with these electrolytic membranes. For one of the two cells, the connecting element is separated from the electrolytic membrane by an empty space, whereas for the other cell, it is separated from the electrolytic membrane by a thin barrier layer designed to act as buffer area for variations in volume of said membrane when the cell is in operation. The thin barrier layer is formed by a polymer material having a lower water absorption capacity than that of the polymer material constituting the electrolytic membrane of the cell.
摘要:
The fuel cell includes an anode chamber having a hydrogen inlet emerging into it. A wall separating the inside of the anode chamber from the outside thereof includes a main region having a first thermal conduction resistance between the outside and the inside of the anode chamber, and a region for promoting the condensation of water having a second thermal conduction resistance between the outside and the inside of the anode chamber strictly smaller than the first thermal conduction resistance so as to delimit a water condensation surface within the anode chamber. A channel for removing the condensed water connects the condensation area to the outside of the anode chamber.
摘要:
Adjacent elementary cells are connected in series by connecting elements, each of which is arranged in an interconnection area. The connecting elements are separated from the respective electrolytic membranes of the two adjacent cells to be connected thereby. In this way, they are never in contact with these electrolytic membranes. For one of the two cells, the connecting element is separated from the electrolytic membrane by an empty space, whereas for the other cell, it is separated from the electrolytic membrane by a thin barrier layer designed to act as buffer area for variations in volume of said membrane when the cell is in operation. The thin barrier layer is formed by a polymer material having a lower water absorption capacity than that of the polymer material constituting the electrolytic membrane of the cell.
摘要:
The catalyst thin layer consists of electronically conductive catalyst nano-particles embedded in a polymeric matrix. The ratio number of catalyst atoms/total number of atoms in the catalyst layer is comprised between 40% and 90%, more preferably between 50% and 60%.
摘要:
The catalyst thin layer consists of electronically conductive catalyst nano-particles embedded in a polymeric matrix. The ratio number of catalyst atoms/total number of atoms in the catalyst layer is comprised between 40% and 90%, more preferably between 50% and 60%.