摘要:
Disclosed are partially deactivated metal catalysts useful for modifying structures of nanomaterials. The present invention is also directed to a method for preparing the partially deactivated metal catalysts, which comprises patterning a substrate with micelles containing iron nanoparticles, removing the micelles from the patterned substrate to deposit the iron nanoparticles thereon, nitriding the iron nanoparticles using a nitrogen plasma, and exposing the nitrided iron nanoparticles to a mixture of ethanol and nitric acid to remove iron from the surface of the nitrided nanoparticles. The iron nitride metal catalyst with a nano-size according to the present invention comprises a core that includes deactivated iron nitride and an active shell surrounding the core. Thus, when preparing a carbon nanotube, the metal catalyst can be effectively used to control the number of walls formed in the carbon nanotube.
摘要:
Disclosed are partially deactivated metal catalysts useful for modifying structures of nanomaterials. The present invention is also directed to a method for preparing the partially deactivated metal catalysts, which comprises patterning a substrate with micelles containing iron nanoparticles, removing the micelles from the patterned substrate to deposit the iron nanoparticles thereon, nitriding the iron nanoparticles using a nitrogen plasma, and exposing the nitrided iron nanoparticles to a mixture of ethanol and nitric acid to remove iron from the surface of the nitrided nanoparticles. The iron nitride metal catalyst with a nano-size according to the present invention comprises a core that includes deactivated iron nitride and an active shell surrounding the core. Thus, when preparing a carbon nanotube, the metal catalyst can be effectively used to control the number of walls formed in the carbon nanotube.
摘要:
Disclosed are a novel hydrogen storage material with enhanced hydrogen storage capacity prepared by doping an organic framework material with light metal cations, and a method of using the same for hydrogen storage. The present inventive material has at least one phenyl group at each face of a triangular building unit, which is doped with metal cations such as alkali metal cations, alkali-earth metal cations, etc., so that the material exhibits greatly improved capacity of hydrogen absorption and desorption at room temperature and can provide hydrogen storage materials practically adapted for fuel batteries useable even at room temperature.
摘要:
Disclosed are a novel hydrogen storage material with enhanced hydrogen storage capacity prepared by doping an organic framework material with light metal cations, and a method of using the same for hydrogen storage. The present inventive material has at least one phenyl group at each face of a triangular building unit, which is doped with metal cations such as alkali metal cations, alkali-earth metal cations, etc., so that the material exhibits greatly improved capacity of hydrogen absorption and desorption at room temperature and can provide hydrogen storage materials practically adapted for fuel batteries useable even at room temperature.