摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A vertical double channel silicon-on-insulator (SOI) field-effect-transistor (FET) includes a pair of two vertical semiconductor layers in contact with a pair of parallel shallow trench isolation layers on a substrate, a source, a drain and a channel region on each of the pair of vertical semiconductor layers with corresponding regions on the pair of vertical semiconductor layers facing each other in alignment, a gate oxide on the channel region of both of the pair of the vertical semiconductor layers, and a gate electrode, a source electrode, and a drain electrode electrically connecting the respective regions of the pair of vertical semiconductor layers.
摘要:
A memory cell of a semiconductor device and a method for forming the same, wherein the memory cell includes a substrate having active regions and field regions, a gate layer formed over the substrate, the gate layer including a plurality of access gates formed over the active regions of the substrate and a plurality of pass gates formed over the field regions of the substrate, first self-aligned contact regions formed between adjacent pass gates and access gates, and second self-aligned contact regions formed between adjacent access gates, wherein a width of each of the first self-aligned contact regions is larger than a width of each of the second self-aligned contact regions.
摘要:
A vertical double channel silicon-on-insulator (SOI) field-effect-transistor (FET) includes a pair of two vertical semiconductor layers in contact with a pair of parallel shallow trench isolation layers on a substrate, a source, a drain and a channel region on each of the pair of vertical semiconductor layers with corresponding regions on the pair of vertical semiconductor layers facing each other in alignment, a gate oxide on the channel region of both of the pair of the vertical semiconductor layers, and a gate electrode, a source electrode, and a drain electrode electrically connecting the respective regions of the pair of vertical semiconductor layers.
摘要:
A vertical double channel silicon-on-insulator (SOI) field-effect-transistor (FET) includes a pair of two vertical semiconductor layers in contact with a pair of parallel shallow trench isolation layers on a substrate, a source, a drain and a channel region on each of the pair of vertical semiconductor layers with corresponding regions on the pair of vertical semiconductor layers facing each other in alignment, a gate oxide on the channel region of both of the pair of the vertical semiconductor layers, and a gate electrode, a source electrode, and a drain electrode electrically connecting the respective regions of the pair of vertical semiconductor layers.
摘要:
A vertical double channel silicon-on-insulator (SOI) field-effect-transistor (FET) includes a pair of two vertical semiconductor layers in contact with a pair of parallel shallow trench isolation layers on a substrate, a source, a drain and a channel region on each of the pair of vertical semiconductor layers with corresponding regions on the pair of vertical semiconductor layers facing each other in alignment, a gate oxide on the channel region of both of the pair of the vertical semiconductor layers, and a gate electrode, a source electrode, and a drain electrode electrically connecting the respective regions of the pair of vertical semiconductor layers.
摘要:
A memory device and a method for fabricating the same provide a device capable of increasing or maximizing the performance of a microstructure device. The device includes: a plurality of word lines formed with a gap therebetween and extending in parallel with each other in a first direction of extension; and a bit line insulated from the plurality of word lines, intersecting the plurality of word lines and extending in a second direction of extension, a transition electrode portion of the bit line positioned in the gap and spaced apart from the plurality of word lines by a predetermined distance, the transition electrode portion of the bit line configured and arranged to be bent toward any one of the plurality of word lines in response to an electrical signal applied to at least one of the plurality of word lines.