摘要:
A full-color organic electroluminescence panel with high resolution comprises a substrate and a plurality of sub-pixel units formed on the substrate. Each sub-pixel unit includes four sub-pixel elements emitting light with the same color. Also, the light color emitted from each sub-pixel unit is different from the light color emitted from the adjacent sub-pixel unit.
摘要:
Shadow masks capable of full-color process of display elements are provided. An exemplary embodiment of a shadow mask comprises a main body having a plurality of openings formed therethrough. A plurality of recesses formed over the main body, located adjacent to the openings. In an exemplary embodiment, the recesses are respectively defined by a trench formed in the main body and the trench is integrated with the main body. In another exemplary embodiment, the recesses are defined by a plurality of ribs protruding over a surface of the main body.
摘要:
An organic electroluminescent panel includes several sub-pixels. The sub-pixels include at least one first electrode; at least one shadow wall formed at the periphery of the first electrode; at least one first common layer formed on the first electrode; several emission layers independently formed on the first common layer; at least one second common layer formed on the emission layers; and at least one second electrode formed on the second common layer. During the fabricating process, the first, second, and third color evaporation sources are provided independently for forming the first, second, and third color emission layers on the corresponding region of first electrode. The tilt directions of three color evaporation sources and the evaporation angles between the evaporation source and the substrate surface are determined according to the positions and heights of the shadow walls.
摘要:
An organic electroluminescent panel includes several sub-pixels. The sub-pixels include at least one first electrode; at least one shadow wall formed at the periphery of the first electrode; at least one first common layer formed on the first electrode; several emission layers independently formed on the first common layer; at least one second common layer formed on the emission layers; and at least one second electrode formed on the second common layer. During the fabricating process, the first, second, and third color evaporation sources are provided independently for forming the first, second, and third color emission layers on the corresponding region of first electrode. The tilt directions of three color evaporation sources and the evaporation angles between the evaporation source and the substrate surface are determined according to the positions and heights of the shadow walls.
摘要:
A pixel structure has a substrate, and a first subpixel unit, a second subpixel unit, and a third subpixel unit disposed on the substrate. The first subpixel unit has three first subpixels arranged in a delta formation, the second subpixel unit has three second subpixels arranged in a delta formation, and the third subpixel unit has three third subpixels arranged in a delta formation. One first subpixel of the first subpixel unit, one second subpixel of the second subpixel unit adjacent to the first subpixel unit, and one third subpixel of the third subpixel unit adjacent to the first subpixel unit form a display pixel unit.
摘要:
A method of fabricating a pixel structure for use in an electroluminescent panel includes the following steps. A substrate is provided. Three shadow masks having a plurality of first, second, and third openings patterned in an array of T shaped are respectively provided, and three evaporation processes using the three shadow masks are subsequently performed to form a plurality of first subpixel units, second subpixel units and third subpixel units respectively. One first subpixel of the first subpixel unit, one second subpixel of the second subpixel unit adjacent to the first subpixel unit, and one third subpixel of the third subpixel unit adjacent to the first subpixel unit form a display pixel unit.
摘要:
A pixel structure has a substrate, and a first subpixel unit, a second subpixel unit, and a third subpixel unit disposed on the substrate. The first subpixel unit has three first subpixels arranged in a delta formation, the second subpixel unit has three second subpixels arranged in a delta formation, and the third subpixel unit has three third subpixels arranged in a delta formation. One first subpixel of the first subpixel unit, one second subpixel of the second subpixel unit adjacent to the first subpixel unit, and one third subpixel of the third subpixel unit adjacent to the first subpixel unit form a display pixel unit.
摘要:
A method of fabricating a pixel structure for use in an electroluminescent panel includes the following steps. A substrate is provided. Three shadow masks having a plurality of first, second, and third openings patterned in an array of T shaped are respectively provided, and three evaporation processes using the three shadow masks are subsequently performed to form a plurality of first subpixel units, second subpixel units and third subpixel units respectively. One first subpixel of the first subpixel unit, one second subpixel of the second subpixel unit adjacent to the first subpixel unit, and one third subpixel of the third subpixel unit adjacent to the first subpixel unit form a display pixel unit.
摘要:
A bi-stable display having a plurality of bi-stable light emitting diodes (LEDs) and a driver are provided. The bi-stable LEDs have bi-stable memory characteristics and emit light according to a plurality of specified voltages, wherein the driver is used to apply the specified voltages to the bi-stable LEDs. The driver further has a brightness controller. The brightness controller is used to control the brightness of the bi-stable display by controlling a plurality of durations in which the specified voltages are applied to the bi-stable LEDs for a plurality of frames.
摘要:
A color display panel formed with a plurality of pixels in a matrix with a row direction and a column direction, wherein each pixel comprises a first sub-pixel, a second sub-pixel and a third sub-pixel adjacently aligned along the row direction of the pixel matrix, and a red light emission zone, a green light emission zone and a blue light emission zone. In one embodiment, the color display panel comprises an arrangement of the red, green and blue light emission zones of a pixel in a triangle with the geometrical center of each emission zone located at a respective vertex of the triangle such that one side of the triangle is substantially parallel to one of the row direction and the column direction, thereby in the plurality of pixels, any two adjacent light emission zones of different colors in the row direction define a gap having a distance, and any two adjacent light emission zones of different colors in the column direction define a gap having a distance that is substantially or nearly the same as the distance of the gap defined between two adjacent light emission zones of different colors in the row direction.