Abstract:
An organic electroluminescent (EL) display device and a method of manufacturing the same are provided. The organic electroluminescent display device includes a rear substrate, a organic EL portion formed on one surface of the rear substrate with a first electrode, an organic layer and a second electrode sequentially laminated. The front substrate is coupled to the rear substrate to seal an internal space in which the organic EL portion is accommodated, for isolating the organic EL portion from the outside. The front substrate further has a transparent moisture-absorbing layer coated on its internal surface.
Abstract:
An organic electroluminescent device and its method of manufacturing are provided. The organic electroluminescent device may include a rear substrate, an organic electroluminescent unit including a first electrode, an organic film, and a second electrode stacked on a surface of the rear substrate. It may also include a front substrate joined to the rear substrate to seal an internal space in which the organic electroluminescent unit is disposed. It may also include a porous oxide layer composed of a porous silica and a metal compound on a lower surface thereof. A device constructed according to the present invention may have excellent adsorption of moisture and oxygen, thereby increasing the life span of the device.
Abstract:
A display apparatus capable of controlling light transmittance and a method of manufacturing the display apparatus. The display apparatus includes a transparent display device in which a pixel that has a first region comprising an organic emission layer (organic EL), and a second region adjacent to the first region, the second region transmitting external light, a first circular polarizer in an optical path of light emitted from the transparent display device, a second circular polarizer, the transparent display device being between the first and second circular polarizers, and a transmittance adjusting device including a liquid crystal layer for adjusting transmittance of external light, the transmittance adjusting device being between the transparent display device and the second polarizer such that the transparent display device encapsulates the liquid crystal layer, external light passing through the first circular polarizer, the second circular polarizer, and the transmittance adjusting device.
Abstract:
Disclosed is an organic light emitting diode device including a substrate, an organic light emitting element disposed on the substrate, a polymer resin layer covering the organic light emitting element, and a getter disposed between the organic light emitting element and the polymer resin. The getter may include a moisture absorbing material and a binder having a volatilization degree of about 400 ppm or less when heated at a temperature ranging from about 60° C. to about 120° C. for about 2 hours.
Abstract:
An organic light emitting device including a substrate on which an organic light emitting unit is formed, wherein the organic light emitting unit sequentially includes a first electrode, an organic layer, and a second electrode; and a passivation layer covering the substrate and the second electrode, and a method of manufacturing the organic light emitting device.
Abstract:
An organic light emitting diode includes a first electrode including a reflective metal layer of a light-reflective metal, an upper transparent conductive layer on the reflective metal layer, and an amorphous oxide layer on the upper transparent conductive layer, an organic emission layer on the first electrode, and a second electrode on the organic emission layer.
Abstract:
An organic light emitting display device includes a substrate; a first electrode layer formed on the substrate; an emission structure layer formed on the first electrode layer; an electron injection layer (EIL) formed immediately on the emission structure layer and comprising a composite layer of LiF:Yb; and a second electrode layer formed on the EIL.
Abstract:
A getter composition including a moisture absorbing material and a binder having a volatility of 400 ppm or less when heated to a temperature in the range of 60° C. to 120° C. for 2 hours and an organic light emitting diode device including the getter composition
Abstract:
A display apparatus includes: a plurality of pixel blocks, each pixel block of the plurality of pixel blocks including a first pixel electrode connected to a first switching element and a second pixel electrode connected to a second switching element; gate lines which extend along a first direction and include a first gate line connected to the first switching element and a second gate line connected to the second switching element; and data lines which extend along a second direction intersecting the first direction. A gate voltage is applied to the first gate line before the second gate line, and the first pixel electrode of each of the pixel blocks displays a same color.
Abstract:
A display apparatus includes a gate driver which sequentially outputs a gate signal at a high state in response to a gate control signal and a data driver which converts image data into a data signal in response to a data control signal. The display apparatus further includes a display panel which includes a plurality of gate lines which sequentially receive the gate signal, a plurality of data lines which receive the data signal and a plurality of pixels connected to the gate and data lines and which receive the data signal in response to the gate signal to display an image. The polarity of the data signal is inverted after the gate signal transitions to a low state.