摘要:
An organic electrolytic solution is provided which includes a lithium salt, an organic solvent including a first solvent having high permittivity and a second solvent having a low boiling point, and a phosphine oxide compound The phosphine oxide compound imparts flame resistance and good charge/discharge properties, thereby producing a lithium battery that is highly stable and reliable and that has good charge/discharge efficiency.
摘要:
An organic electrolytic solution is provided which includes a lithium salt, an organic solvent including a first solvent having high permittivity and a second solvent having a low boiling point, and a phosphine oxide compound The phosphine oxide compound imparts flame resistance and good charge/discharge properties, thereby producing a lithium battery that is highly stable and reliable and that has good charge/discharge efficiency.
摘要:
A surface treated anode and a lithium battery using the same are provided. The surface treated anode includes a current collector, and an anode active material layer formed on the current collector. The anode active material layer is treated with an amine group containing compound.
摘要:
An anode active material comprises graphite core particles, and a first coating layer and a second coating layer formed on the surface of the graphite core particles. The first coating layer comprises silicon microparticles and the second coating layer comprises carbon fiber.
摘要:
An anode active material and a lithium battery employing the same are provided. In one embodiment of the anode active material, a —(CH2CH2O)— repeating unit is bonded to the surface of metal particles that contain metals that can be alloyed with lithium. The repeating unit prevents reactions between the metal particles and the electrolyte solution. Also, due to its elasticity, the repeating unit absorbs part of the volume expansion of the metal particles. The repeating unit also prevents the metal particles from condensing, thereby enhancing dispersion properties. Accordingly, the inventive anode active material has high capacity and excellent capacity retention during repeated charging and discharging, thereby providing a lithium battery with a long cycle life.
摘要:
An anode active material comprises graphite core particles, and a first coating layer and a second coating layer formed on the surface of the graphite core particles. The first coating layer comprises silicon microparticles and the second coating layer comprises carbon fiber.
摘要:
A composite anode active material includes a first intermetallic compound, a second intermetallic compound, a metal that is incapable of alloy formation with lithium, and carbon. In the composite anode active material, an amorphous carbon is present between the first intermetallic compound and the second intermetallic compound, and the metal that is incapable of alloy formation with lithium is uniformly distributed throughout in the composite anode active material. The composite anode active material may be used as an anode of a lithium rechargeable battery.
摘要:
A composite anode active material includes a first intermetallic compound, a second intermetallic compound, a metal that is incapable of alloy formation with lithium, and carbon. In the composite anode active material, an amorphous carbon is present between the first intermetallic compound and the second intermetallic compound, and the metal that is incapable of alloy formation with lithium is uniformly distributed throughout in the composite anode active material. The composite anode active material may be used as an anode of a lithium rechargeable battery.
摘要:
Anode active materials and methods of preparing the same are provided. One anode active material includes a carbonaceous material capable of improving battery cycle characteristics. The carbonaceous material bonds to and coats metal active material particles and fibrous metallic particles to suppress volumetric changes.
摘要:
Anode active materials and methods of preparing the same are provided. One anode active material includes a carbonaceous material capable of improving battery cycle characteristics. The carbonaceous material bonds to and coats metal active material particles and fibrous metallic particles to suppress volumetric changes.