摘要:
The present invention discloses a method for fabricating bipolar integrated circuits, wherein LOCOS technology is used to define the active regions needed by all elements so that the self-alignment of the associated layers can be realized, and implant resistor regions are also directly defined in the active regions by local oxide layers; after base regions have been driven in the wafer, the resistors are implanted into the wafer so that the cost of resistor photomasks can be saved; silicon nitride is adopted to be the material of the dielectric layers of the capacitors, and with the characteristic of a buffering oxide etchant that etches oxide faster than it etches silicon nitride, the conventional deposition sequence of the dielectric layer is changed so that the formation of the dielectric layer needs only a single photomask.
摘要:
The present invention relates to a lateral PNP transistor and the method of manufacturing the same. The medium doping N-type base area and the light doping P− collector area were first introduced in the structure before the formation of P+ doping emitter area and the collector area. The emitter-base-collector doping profile in the lateral and the base width of LPNP were similar to NPN. The designer can optimize the doping profile and area size of each area according to the request of the current gain (Hfe), collector-base breakdown voltage (BVceo), and early voltage (VA) of LPNP transistor. These advantages may cause to reduce the area and enhance performance of the LPNP transistor.
摘要:
The present invention relates to a lateral PNP transistor and the method of manufacturing the same. The medium doping N-type base area and the light doping P− collector area were first introduced in the structure before the formation of P+ doping emitter area and the collector area. The emitter-base-collector doping profile in the lateral and the base width of LPNP were similar to NPN. The designer can optimize the doping profile and area size of each area according to the request of the current gain (Hfe), collector-base breakdown voltage (BVceo), and early voltage (VA) of LPNP transistor. These advantages may cause to reduce the area and enhance performance of the LPNP transistor.
摘要:
The present invention discloses a high voltage and high frequency poly emitter bipolar structure with improved breakdown voltage performance. The advantage of the poly emitter bipolar structures is that the SOD coating layer can improve the breakdown voltage of a capacitor structure higher to be 6-8 volts. In addition, the poly emitter bipolar structure having the inter-level dielectric layer deposited by PECVD on the emitter and collector by optimizing PECVD deposition process condition to adjust the charge in the oxide of inter-level dielectric layer has a breakdown voltage higher than 30 volts.
摘要:
This invention is forming the DMOS channel after CMOS active layer before gate poly layer to make the modular DMOS process step easily adding into the sub-micron CMOS or BiCMOS process. And DMOS source is formed by implant which is separated by a spacer self-aligned to the window for DMOS body. By this method, the performance of CMOS and bipolar devices formed original CMOS or BiCMOS process keeps no change. The product design kit, such as standard cell library of CMOS and BiCMOS, can be used continuously with no change.
摘要:
This invention is forming the DMOS channel after CMOS active layer before gate poly layer to make the modular DMOS process step easily adding into the sub-micron CMOS or BiCMOS process. And DMOS source is formed by implant which is separated by a spacer self-aligned to the window for DMOS body. By this method, the performance of CMOS and bipolar devices formed original CMOS or BiCMOS process keeps no change. The product design kit, such as standard cell library of CMOS and BiCMOS, can be used continuously with no change.
摘要:
A lateral DMOS structure includes a light doped p-type region beneath and near the gate at the drain side. The electric field on the surface near the gate is reduced. Thus the electric field near the gate decreases, and the SOA (safe operating area) of the lateral DMOS device increases and long time reliability improves. Moreover, the lateral DMOS of the invention can be fabricated without increasing the manufacturing cost.
摘要:
A lateral DMOS structure includes a light doped p-type region beneath and near the gate at the drain side. The electric field on the surface near the gate is reduced. Thus the electric field near the gate decreases, and the SOA (safe operating area) of the lateral DMOS device increases and long time reliability improves. Moreover, the lateral DMOS of the invention can be fabricated without increasing the manufacturing cost.
摘要:
A fabrication method is applied to the bipolar integrated circuit, which combines with various patterns of the masks using in the different processes to form a combination mask. By using the combination mask, a silicon dioxide layer is etched to produce the open windows required in the different processes. Thereafter, according to the requirements of different processes, the unused windows are covered with photoresists to avoid the alignment errors resulted from the pattering and etching of different masks. Because the method doesn't need to reserve tolerance for alignment errors, the degree of integration of the semiconductor processes is enhanced and the cost of production is reduced.
摘要:
The present invention relates to a lateral PNP transistor and the method of manufacturing the same. The medium doping N-type base area and the light doping P− collector area were first introduced in the structure before the formation of P+ doping emitter area and the collector area. The emitter-base-collector doping profile in the lateral and the base width of LPNP were similar to NPN. The designer can optimize the doping profile and area size of each area according to the request of the current gain (Hfe), collector-base breakdown voltage (BVceo), and Early voltage (VA) of LPNP transistor. These advantages may cause to reduce the area and enhance performance of the LPNP transistor.