摘要:
Disclosed is focus control method for Delta-Sigma based image formation devices in which a steering term and a focusing term of a delay formula are respectively quantized, and corresponding two channels at both sides of the probe are synchronized by a delay produced during dynamic focusing. During synchronizing the two channels, two numeral values with equal absolute value but with opposite signs are respectively inserted so as to eliminate extra noise the signals are after summing up, and controlling common delay of the two channels is performed by same one controller. After summing up the inserted two values, the dynamic aperture control of the Delta-Sigma based image formation device can be effectively realized and noise during dynamic focusing also is eliminated thereby achieving an ideal single bit output.
摘要:
Methods perform dynamic focusing of a coherent array imaging system are invented. Dynamic focusing in ultrasonic array imaging involves extensive real-time computations and data communication. Particularly for real-time three-dimensional imaging using fully-sampled two-dimensional arrays, implementation of dynamic focusing can be extremely complicated. The invention described in this disclosure greatly simplifies the delay control mechanism by exploiting both spatial and temporal characteristics of the focusing delay patterns. The simplification primarily results from (1) grouping adjacent channels into sub-apertures for the range dependent focusing component, and (2) non-uniform quantization of the delay values.
摘要:
A dynamic focusing apparatus and method for ultrasonic imaging, using transducer frequency encoding technique to map different positions of the surface of a transducer to different frequency responses. To a particular focal position, the time delay required for focusing from various positions on the transducer surface to the focal point can be calculated. By combining frequency responses and time delays that correspond to different transducer positions, a single transmit waveform can be used to drive the transducer and to realize focusing similar to that of an array imaging system. Similar principles can be applied to dynamic focusing at the receive end. A filter can be used to select particular positions on a transducer surface. The received signal extracted in this manner can also be time delayed for focusing. By combining all filters that correspond to different transducer positions, dynamic receive focusing can be implemented using a single position dependent filter.
摘要:
An ultrasonic imaging system including an aberration correction system uses a harmonic component of the fundamental transmitted frequency for imaging, or for aberration correction, or both. By properly selecting the frequency pass bands of filters used in the image signal path and in the aberration correction signal path operating advantages are provided. The aberration correction values may be calculated concurrently with image formation.
摘要:
A contrast improvement method and system for photoacoustic imaging decomposes a photoacoustic image into a plurality of subband images using a set of filters, and integrates the subband images to form an integrated image. The subband images may be pseudo colored and weighted to improve contrast of the photoacoustic image.
摘要:
Ultrasound imaging adapts as a function of a coherence factor. Various beamforming, image forming or image processing parameters are varied as a function of a coherence factor to improve detail resolution, contrast resolution, dynamic range or SNR. For example, a beamforming parameter such as the transmit or receive aperture size, apodization type or delay is selected to provide maximum coherence. Alternatively or additionally, an image forming parameter, such as the number of beams for coherent synthesis or incoherent compounding, is set as a function of the coherence factor. Alternatively or additionally an image processing parameter such as the dynamic range, linear or nonlinear video filter and/or linear or nonlinear map may also adapt as a function of the coherence factor.
摘要:
A signal processing method is adapted for dealing with a plurality of vector matrixes to detect the image of a predetermined range, and the vector matrix data are generated by reflecting a plurality of ultrasonic beams in the predetermined range. The signal processing method of the present invention is that summing all vector matrix data in a predetermined time interval so as to generate a total correlation matrix. In addition, obtaining a correlation matrix through the total vector matrix multiplied by a transposed total vector matrix, and obtaining a weight value according to inversion correlation matrix. Then, a weighting operation is performed for the vector matrix data in the predetermined time interval according to the weight value, so as to obtain a weighting operation result for performing an image synthesis procedure.
摘要:
A compounding method for reducing speckle noise applied in an ultrasound imaging apparatus is disclosed. The compounding method includes the steps of providing an object, measuring the object for obtaining a reference image by the ultrasound imaging apparatus, applying an external force to the object to deform the object, measuring the deformed object for obtaining an deformed object image at the same position, estimating an in-plane displacement field of the deformed object image for correcting an in-plane motion of the object to obtain a corrected image, and compounding the reference image with the corrected image to obtain a compounded image of the object for achieving the speckle noise reduction.
摘要:
A contrast improvement method and system for photoacoustic imaging decomposes a photoacoustic image into a plurality of subband images using a set of filters, and integrates the subband images to form an integrated image. The subband images may be pseudo colored and weighted to improve contrast of the photoacoustic image.
摘要:
An imaging probe is suitable to be inserted into a tubular object so as to detect an interior image of the tubular object. The imaging probe includes a light source excitation assembly, an ultrasonic transducer and a receiver. The light source excitation assembly includes a pulsed laser, a first optical fiber and a cone-shaped reflecting member. The pulsed laser is suitable to generate a pulsed light energy. The cone-shaped reflecting member is suitable to reflect the pulsed light energy to let the pulsed light energy annularly irradiate the inner wall of the tubular object so as to produce a photoacoustic signal. The ultrasonic transducer is suitable to generate an ultrasonic signal. The ultrasonic signal annularly irradiates the inner wall of the tubular object so as to produce an ultrasonic echo signal. The receiver receives the photoacoustic signal and the ultrasonic echo signal.