摘要:
The present invention provides a microarray bioprobe device integrated with an amplifier having bottom-gate thin film transistors. The present invention utilizes a micro-electro-mechanical process as well as a semiconductor process to integrate microarray bioprobes and an amplifier having bottom-gate thin film transistors on a flexible substrate. As such, a signal obtained by the microarray bioprobes can be amplified nearby to improve the signal-to-noise ratio and impedance matching. The microarray bioprobes are formed on the flexible substrate such that the present microarray bioprobe device can be disposed to conform to the profile of a living body's portion so as to improve electrical contact between the bioprobes and the living body's portion.
摘要:
The present invention provides a microarray bioprobe device integrated with a semiconductor amplifier module, which integrates micro array biological probes and thin film transistors on a flexible substrate by Micro-Electro-Mechanical System (MEMS) processes and semiconductor processes. A signal from the microarray bioprobe device is amplified through a near amplifier to increase signal-to-noise ratio and impendence matching. The micro array biological probes of the present invention are produced on the flexible substrate such that the micro array biological probes can be disposed to conform to the profile of a living body's portion and improving contact between the probes and living body's portion.
摘要:
The present invention provides a microarray bioprobe device integrated with an amplifier having bottom-gate thin film transistors. The present invention utilizes a micro-electro-mechanical process as well as a semiconductor process to integrate microarray bioprobes and an amplifier having bottom-gate thin film transistors on a flexible substrate. As such, a signal obtained by the microarray bioprobes can be amplified nearby to improve the signal-to-noise ratio and impedance matching. The microarray bioprobes are formed on the flexible substrate such that the present microarray bioprobe device can be disposed to conform to the profile of a living body's portion so as to improve electrical contact between the bioprobes and the living body's portion.
摘要:
The present invention provides a mobile and web-based 12-lead ECG management information system for processing clinical 12-lead ECG, comprising: (a) a clinical device for automatically extracting a SCP-ECG or XML-ECG file and processing signals; (b) an ECG database for saving data exported from the clinical device with web-based user interface, and a mobile database which is synchronized with the ECG database; and (c) an interactive electric document for annotating 12-lead ECG with clinical diagnosis codes.
摘要:
The present invention provides a mobile and web-based 12-lead ECG management information system for processing clinical 12-lead ECG, comprising: (a) a clinical device for automatically extracting a SCP-ECG or XML-ECG file and processing signals; (b) an ECG database for saving data exported from the clinical device with web-based user interface, and a mobile database which is synchronized with the ECG database; and (c) an interactive electric document for annotating 12-lead ECG with clinical diagnosis codes.
摘要:
A recording medium for storing video files and a method for editing video files are disclosed. In the method, when a video file is stored in a computer-accessible recording medium for storing video files of the present invention, the end positions of groups of pictures (GOPs) align with cluster boundaries of the computer-accessible recording medium. When editing the video file, implementation points are also at cluster boundaries of the recording medium. Therefore, the original video file is directly split by modifying the cluster-chain relationship and the file length of the corresponding file descriptor in the recording medium, without copying and moving actual data in the computer-accessible recording medium. Consequently, the efficiency of editing video files is enhanced.
摘要:
A communication device has an antenna structure including a substrate, a ground element, an open slot and a radiating metal portion. The ground element is disposed on a first surface of the substrate. The open slot is formed on the ground element and substantially parallel with an edge of the ground element, wherein the open slot at least generates a first resonant mode, and a distance between the open slot and the edge of the ground element is shorter than 0.05 wavelength of a center frequency of the first resonant mode. The radiating metal portion is disposed on a second surface of the substrate, wherein the open slot at least partially covers the radiating metal portion, the radiating metal portion at least generates a second resonant mode, and a feed point of the radiating metal portion is electrically coupled to a signal source on the substrate.
摘要:
In a cyclic video recording method for an optical storage medium, the optical storage medium is divided into a set of forward seeking sub-zones and a set of backward seeking sub-zones. Initial values of a current sub-zone and a flag are set. The flag indicates a direction to seek the sub-zones and the initial value of the flag is determined by the initial value of the current sub-zone. When the flag indicates a forward direction, it determines whether the current sub-zone is the last sub-zone. When the current sub-zone is not the last sub-zone, a next sub-zone in the forward direction is set to become the current sub-zone and the write operation is performed. When the current sub-zone is the last sub-zone, the flag is set to a backward direction, the last sub-zone is set to become the current sub-zone and the write operation is performed.
摘要:
A mobile communication device is provided. The mobile communication device includes a system circuit board with a surface, a ground plane having a monopole slot on the surface, a microstrip feedline, and a metal element, wherein the ground plane has a longer edge and a shorter edge. The monopole slot has a first operating band and a second operating band. The microstrip feedline is located on the system circuit board, wherein one end of the microstrip feedline passes over the monopole slot, and the other end of the microstrip feedline is connected to a signal source. The metal element is electrically connected to the shorter edge of the ground plane, and is substantially perpendicular to the ground plane. A distance between the open end of the monopole slot and the shorter edge of the ground plane where the metal element is connected is shorter than 0.05 wavelength of the lowest operating frequency of the first operating band.