摘要:
The present invention provides a mobile and web-based 12-lead ECG management information system for processing clinical 12-lead ECG, comprising: (a) a clinical device for automatically extracting a SCP-ECG or XML-ECG file and processing signals; (b) an ECG database for saving data exported from the clinical device with web-based user interface, and a mobile database which is synchronized with the ECG database; and (c) an interactive electric document for annotating 12-lead ECG with clinical diagnosis codes.
摘要:
The present invention provides a mobile and web-based 12-lead ECG management information system for processing clinical 12-lead ECG, comprising: (a) a clinical device for automatically extracting a SCP-ECG or XML-ECG file and processing signals; (b) an ECG database for saving data exported from the clinical device with web-based user interface, and a mobile database which is synchronized with the ECG database; and (c) an interactive electric document for annotating 12-lead ECG with clinical diagnosis codes.
摘要:
The present invention provides a microarray bioprobe device integrated with an amplifier having bottom-gate thin film transistors. The present invention utilizes a micro-electro-mechanical process as well as a semiconductor process to integrate microarray bioprobes and an amplifier having bottom-gate thin film transistors on a flexible substrate. As such, a signal obtained by the microarray bioprobes can be amplified nearby to improve the signal-to-noise ratio and impedance matching. The microarray bioprobes are formed on the flexible substrate such that the present microarray bioprobe device can be disposed to conform to the profile of a living body's portion so as to improve electrical contact between the bioprobes and the living body's portion.
摘要:
The present invention provides a microarray bioprobe device integrated with a semiconductor amplifier module, which integrates micro array biological probes and thin film transistors on a flexible substrate by Micro-Electro-Mechanical System (MEMS) processes and semiconductor processes. A signal from the microarray bioprobe device is amplified through a near amplifier to increase signal-to-noise ratio and impendence matching. The micro array biological probes of the present invention are produced on the flexible substrate such that the micro array biological probes can be disposed to conform to the profile of a living body's portion and improving contact between the probes and living body's portion.
摘要:
The present invention provides a microarray bioprobe device integrated with an amplifier having bottom-gate thin film transistors. The present invention utilizes a micro-electro-mechanical process as well as a semiconductor process to integrate microarray bioprobes and an amplifier having bottom-gate thin film transistors on a flexible substrate. As such, a signal obtained by the microarray bioprobes can be amplified nearby to improve the signal-to-noise ratio and impedance matching. The microarray bioprobes are formed on the flexible substrate such that the present microarray bioprobe device can be disposed to conform to the profile of a living body's portion so as to improve electrical contact between the bioprobes and the living body's portion.
摘要:
This invention relates to a bone implant that includes a bioinert substrate covered with a ceramic layer containing a plurality of indentations. The total surface area of the indentations is 30-70% of the total surface area of the ceramic layer. This invention also relates to a method of preparing such a bone implant. The method includes: (1) affixing a ceramic layer on the surface of a bioinert substrate; (2) forming a plurality of indentations in the ceramic layer, wherein the total surface area of the indentations is 30-70% of the total surface area of the ceramic layer; and (3) immobilizing a biopolymer onto the ceramic layer via covalent bonding.
摘要:
This invention relates to a bone implant that includes a bioinert substrate covered with a ceramic layer containing a plurality of indentations. The total surface area of the indentations is 30-70% of the total surface area of the ceramic layer. This invention also relates to a method of preparing such a bone implant. The method includes: (1) affixing a ceramic layer on the surface of a bioinert substrate; (2) forming a plurality of indentations in the ceramic layer, wherein the total surface area of the indentations is 30-70% of the total surface area of the ceramic layer; and (3) immobilizing a biopolymer onto the ceramic layer via covalent bonding.
摘要:
The present invention discloses a method using a microfluidic chip to sort high motility sperm. In the present invention, sperm and a medium are respectively injected into a microchannel of a microfluidic chip via several inlets. Owing to the characteristic of microfluidics, the sperm and the medium form a sperm laminar flow and medium laminar flow in the microchannels; the sperm laminar flow and the medium laminar flow are parallel to each other. The higher motile sperm may pass through at least one laminar flow within a limited time, whereby different motility levels of sperm can be respectively collected from different outlets.