摘要:
A radio frequency (RF) identification tag including a substrate, a planar antenna, an RF chip, a plurality of signal conductors and a plurality of ground conductors is provided. The RF chip receives an RF signal from the planar antenna to generate an identification code. The signal conductors are coupled to the planar antenna. The ground conductors, interlaced on two opposite sides of the signal conductors, and the signal conductors are adjacent to each other and disposed on the substrate to form a coplanar waveguide structure which includes an impedance match portion and a transmission portion. The impedance match portion has an input end coupled to the signal conductors and a ground plane coupled to the ground conductors. The RF chip is disposed between the input end and the ground plane. The transmission portion is connected between the impedance match portion and the planar antenna.
摘要:
A radio frequency (RF) identification tag including a substrate, a planar antenna, an RF chip, a plurality of signal conductors and a plurality of ground conductors is provided. The RF chip receives an RF signal from the planar antenna to generate an identification code. The signal conductors are coupled to the planar antenna. The ground conductors, interlaced on two opposite sides of the signal conductors, and the signal conductors are adjacent to each other and disposed on the substrate to form a coplanar waveguide structure which includes an impedance match portion and a transmission portion. The impedance match portion has an input end coupled to the signal conductors and a ground plane coupled to the ground conductors. The RF chip is disposed between the input end and the ground plane. The transmission portion is connected between the impedance match portion and the planar antenna.
摘要:
A method for forming nanometer scale dot-shaped materials is provided. The method includes providing a sub-micrometer scale material and a metallo-organic compound. The sub-micrometer scale material and the metallo-organic compound are mixed in a solvent. Then, the metallo-organic compound is decomposed by thermal decomposition process and reduced to form a plurality of nanometer scale dot-shaped materials on the sub-micrometer scale material, wherein the sub-micrometer scale material and the nanometer-scale dot-shaped materials are heterologous materials. Then, the plurality of nanometer scale dot-shaped materials is melted, such that a plurality of the adjacent sub-micrometer scale materials is connected to each other to form a continuous interface between the sub-micrometer scale materials.
摘要:
An electrically conductive composition and a fabrication method thereof are provided. The electrically conductive structure includes a major conductive material and an electrically conductive filler of an energy delivery character dispersed around the major conductive material. The method includes mixing a major conductive material with an electrically conductive filler of an energy delivery character to form a mixture, coating the mixture on a substrate, applying a second energy source to the mixture while simultaneously applying a first energy source for sintering the major conductive material to form an electrically conductive composition with a resistivity smaller than 10×10−3Ω·cm.
摘要:
An electrically conductive composition and a fabrication method thereof are provided. The electrically conductive structure includes a major conductive material and an electrically conductive filler of an energy delivery character dispersed around the major conductive material. The method includes mixing a major conductive material with an electrically conductive filler of an energy delivery character to form a mixture, coating the mixture on a substrate, applying a second energy source to the mixture while simultaneously applying a first energy source for sintering the major conductive material to form an electrically conductive composition with a resistivity smaller than 10×10−3Ω·cm.
摘要:
A nano-metal solution, nano-metal complex grains, and a manufacturing method of a metal film are provided. The nano-metal solution includes metal grains having an amount of 0.1˜30 wt %, metallic-organic self-decomposition molecules having an amount of 0.1˜50 wt % and having formula 1, and a solvent having an amount of 20˜99.8 wt %: wherein M represents a metal ion. The metallic-organic self-decomposition molecules and the metal grains are evenly mixed in the solvent, and the metallic-organic self-decomposition molecules are adsorbed on surfaces of the metal grains.
摘要:
A method for providing thermotolerance of a plant and the genetic engineering applications thereof are disclosed. DNA fragment containing a gene encoding EXPORTIN1A is transferred into a plant cell to provide or enhance thermotolerance of the plant. The method can be applied in genetic engineering to select transgenic plant.