摘要:
Disclosed is a steam generator in which a continuous evaporating heating area is disposed within a heating gas duct that is penetrated in a nearly horizontal direction by a heating gas. Said continuous evaporating heating area comprises a number of steam-generating pipes that are connected in parallel and are penetrated by a flowing medium and is configured such that a steam-generating pipe which is heated more than another steam-generating pipe of the same continuous evaporating heating area has a higher throughput of the flowing medium than said other steam-generating pipe. The aim of the invention is to create a steam generator which provides a particularly high degree of stability of flow during operation of the continuous evaporating heating area while keeping the structural complexity and design comparatively simple. Said aim is achieved by means of a discharge collector which is mounted downstream of the steam-generating pipes of the continuous evaporating heating area on the side of the flowing medium, and the longitudinal axis of which is located essentially parallel to the direction of the heating gas.
摘要:
The invention relates to a steam generator in which the continuous heating panel of an evaporator is arranged in a heating gas channel which can be cross-flown in a more or less horizontal direction of a heating gas. Said continuous heating panel of the evaporator comprises a plurality of pipes of a steam generator which are connected in parallel to each other. Said pipes are constructed in such a way that they cross a flow medium and are provided with the part of a more or less vertical down pipe which can be cross-flown by the flow medium in a downward direction and with the part of a rising pipe connected downstream with respect to the down pipe on the side of the flow medium and which is more or less vertical and can be cross-flown by the flow medium in an upward direction. The continuous heating panel of the evaporator is arranged in such a way that one pipe of the steam generator which is hotter than the other pipe of the steam generator of the same continuous heating panel of the evaporator has a flow medium rate which is higher than that of the other pipe of the steam generator. The aim of said invention is to operate said steam generator in a relatively simple manner in association with a highly stable flow in the continuous heating panel of the evaporator. For this purpose, the flow medium of the continuous heating panel of the evaporator is supplied in such a way that the flow velocity thereof is higher than a minimum flow velocity predefined in the down pipe. The inventive steam generator is extremely well adapted for carrying out said method and comprises another continuous heating panel of the evaporator which is connected downstream with respect to the continuous heating panel of the evaporator on the side of the flow medium.
摘要:
The invention relates to a steam generator in which the continuous heating panel of an evaporator is arranged in a heating gas channel which can be cross-flown in a more or less horizontal direction of a heating gas. Said continuous heating panel of the evaporator comprises a plurality of pipes of a steam generator which are connected in parallel to each other. Said pipes are constructed in such a way that they cross a flow medium and are provided with the part of a more or less vertical down pipe which can be cross-flown by the flow medium in a downward direction and with the part of a rising pipe connected downstream with respect to the down pipe on the side of the flow medium and which is more or less vertical and can be cross-flown by the flow medium in an upward direction. The continuous heating panel of the evaporator is arranged in such a way that one pipe of the steam generator which is hotter than the other pipe of the steam generator of the same continuous heating panel of the evaporator has a flow medium rate which is higher than that of the other pipe of the steam generator. The aim of said invention is to operate said steam generator in a relatively simple manner in association with a highly stable flow in the continuous heating panel of the evaporator. For this purpose, the flow medium of the continuous heating panel of the evaporator is supplied in such a way that the flow velocity thereof is higher than a minimum flow velocity predefined in the down pipe. The inventive steam generator is extremely well adapted for carrying out said method and comprises another continuous heating panel of the evaporator which is connected downstream with respect to the continuous heating panel of the evaporator on the side of the flow medium.
摘要:
Disclosed is a steam generator in which a continuous evaporating heating area is disposed within a heating gas duct that is penetrated in a nearly horizontal direction by a heating gas. Said continuous evaporating heating area comprises a number of steam-generating pipes that are connected in parallel and are penetrated by a flowing medium and is configured such that a steam-generating pipe which is heated more than another steam-generating pipe of the same continuous evaporating heating area has a higher throughput of the flowing medium than said other steam-generating pipe. The aim of the invention is to create a steam generator which provides a particularly high degree of stability of flow during operation of the continuous evaporating heating area while keeping the structural complexity and design comparatively simple. Said aim is achieved by means of a discharge collector which is mounted downstream of the steam-generating pipes of the continuous evaporating heating area on the side of the flowing medium, and the longitudinal axis of which is located essentially parallel to the direction of the heating gas.
摘要:
A steam generator which is both suitable for a horizontal mode of construction and offers the advantages of a continuous steam generator. According to the invention, a steam generator has at least one continuous heating surface disposed in a duct where hot gas circulates in a substantially horizontal direction. The heating surface consists of a plurality of parallel and almost vertical pipes which are used to circulate a fluid, and is configured in such a way that the fluid circulating in a tube heated to a greater temperature than the following tube of the same continuous heating surface has a higher flow rate than the fluid circulating in the following tube.
摘要:
The fossil fuel fired continuous-flow steam generator has a gas turbine combustion chamber for fossil combustibles. On the heating gas side a vertical gas extractor is mounted downstream of a horizontal gas extractor. The walls surrounding the combustion chamber are composed of vertical evaporator tubes that are welded together. During operation the temperature differences between adjacent evaporator tubes of the combustion chamber are kept as low as possible. The burners are arranged at the level of the horizontal gas extractor. For a number of evaporator tubes which can be simultaneously impinged by the flow medium the ratio of the steam generating capacity M (in kg/s) at full load and of the sum A (in m2) of the inner cross-sectional surfaces of the same evaporator tubes is less than 1350 (in kg/sm2).
摘要:
The object of the invention is to ensure a fast, economical and reliable power regulation of a steam generating power plant (1) having a turbo set that comprises a steam turbine (2) and a generator (6) and during the operation of which water (W) is injected into or upstream of an overheater heating surface According to the disclosed fast power regulating process of the steam generating power plant (1), the injection rate of water (W) is increased to adjust an additional generator output. In a steam generating power plant (1) which is particularly suitable for carrying out the process, an overheater heating surface, of a steam generator (28) is provided with a water injector (70, 71) connected to a regulating component (82) for regulating the injection rate of water (W) into the overheater heating surface. The regulating component (82) supplies a regulating signal to the water injector, (70, 72), depending on the required additional generator output.
摘要:
A once-through steam generator includes a gas flue formed of steam generator tubes welded to one another in a gas-tight manner through fins. The steam generator tubes are connected in parallel for the throughflow of a flow medium, they have a surface structure on their inside for generating a high flow turbulence in the medium flowing through them and they are disposed approximately in a spiral coil in a firing region of the gas flue. The steam generator tubes are constructed in such a way that, when they are in operation, the geodetic pressure loss of the medium flowing through them is at least 0.5 times their pressure loss due to friction. This ensures that such a once-through steam generator can also be operated in low load states of, for example, about 20% of the design load, without excessive thermal stresses occurring.
摘要:
A fossil-fired steam generator includes a gas flue having a surrounding wall being formed by tubes which are mutually joined gas-tightly and which are disposed substantially vertically and can conduct an upward flow through them on the medium side. The tubes in a first or lower part of the gas flue have a greater internal diameter than the tubes in a second part of the gas flue located above. On one hand, this ensures reliable cooling of the tubes. On the other hand, even additional or above-average heating of individual tubes does not lead to inadmissible temperature differences between outlets of the tubes.
摘要:
Burner installation in a steam generator having means for firing pulverized coal as well as gas, includes a combustion chamber of substantially rectangular cross section, at least three pulverized coal-burners disposed mutually adjacent one another in cross-sectional direction of the combustion chamber on a first wall of the combustion chamber at least one of the pulverized coal-burners being located between others thereof, gas burners located on at least another wall of the combustion chamber located adjacent the first wall thereof, the pulverized coal burners being located at an elevation of the combustion chamber above the gas burners, the at least one of the pulverized coal-burners being operable only if gas is not being burned simultaneously therewith by the gas burners.