摘要:
A method to reduce the problem complexity maintains a relatively high quality port assignment by abstracting local connections in the macro when performing the port assignment. This is done for netlength, congestion as well as timing. The internal netlist of the macro is abstracted in such a way that the optimization of the external interconnect can be done in an efficient manner. Three levels of abstractions are described. A first level optimizes the top level interconnect, a second level optimizes the top level and macro interconnects, while a third level optimizes the top level timing.
摘要:
Fixed outline shaped and modifiable outline shaped random logic macros of an electronic circuit design are manipulated by modifying an outline of a modifiable outline shape macro based on criteria consisting of any one of a macro port weight value, a macro port ordering; a macro rapport constraint or a macro logic depth and placing resulting macros at locations on an integrated circuit (chip).
摘要:
Fixed outline shaped and modifiable outline shaped random logic macros of an electronic circuit design are manipulated by modifying an outline of a modifiable outline shape macro based on criteria consisting of any one of a macro port weight value, a macro port ordering; a macro rapport constraint or a macro logic depth and placing resulting macros at locations on an integrated circuit (chip).
摘要:
A method to reduce the problem complexity maintains a relatively high quality port assignment by abstracting local connections in the macro when performing the port assignment. This is done for netlength, congestion as well as timing. The internal netlist of the macro is abstracted in such a way that the optimization of the external interconnect can be done in an efficient manner. Three levels of abstractions are described. A first level optimizes the top level interconnect, a second level optimizes the top level and macro interconnects, while a third level optimizes the top level timing.
摘要:
A method to optimize performance of an electric circuit design is disclosed. The method comprises providing for each circuit element of the electric circuit design available design parameter options; transforming the electric circuit design and the design parameter options into a linear programming model; determining a solution for the linear programming model; and based on the solution generating a list of circuit elements which design parameters need to be changed to a different option to achieve performance optimization.
摘要:
A processor instruction scheduler comprising an optimization engine which uses an optimization model for a processor architecture with: means to generate an optimization model for the optimization engine from a design of a processor and data representing optimization goals and constraints and a code stream, wherein the processor has at least two execution pipes and at least two registers, and wherein the design comprises data for processor instruction latency and execution pipes, and wherein the code stream comprises processor instructions with corresponding register selections; and reordering means to generate an optimized code stream from the code stream with the optimal solution provided by the optimization engine for the optimization model by reordering the code stream, such that optimum values for the optimization goals under the given constraints are achieved without affecting the operation results of the code stream.
摘要:
An integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located at a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is approximately axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is approximately axially aligned with the third via. The second, third, and fourth vias, and the third and fourth wires form a path between the first and second wires redundant to the first via.
摘要:
The present invention relates to a method for validating the correct logical function and timing behavior of a digital circuit design within a cycle-based verification environment. The method comprises the steps of providing a VHDL description of the digital circuit design, performing a logic synthesis, wherein the VHDL description is turned into a design implementation in terms of logic gates, and creating a netlist including the elements of the digital circuit design and the connections between said elements. The method comprises the further steps of providing a transformation script with at least one transparent storage element, wherein said transparent storage element represents a path delay within the digital circuit design, creating a new netlist with the at least one transparent storage elements, running a verification, and checking if the new netlist is clean from a logical and timing point of view.
摘要:
A design structure for an integrated circuit including a first wire of a first level of wiring tracks, a second wire of a second level of wiring tracks, a third wire of a third level of wiring tracks, and a fourth wire located a first distance from the second wire in the second level of wiring tracks. A first via connects the first and second wires at a first location of the second wire. A second via connects the second and third wires at the first location, the second via is substantially axially aligned with the first via. A third via connecting the third and fourth wires at a second location of the fourth wire. A fourth via connecting the first and fourth wires at the second location, the fourth via is substantially axially aligned with the third via. The second, third, and fourth vias, and the third and fourth wires form a path between the first and second wires redundant to the first via.
摘要:
The present invention relates to a method for validating the correct logical function and timing behavior of a digital circuit design within a cycle-based verification environment. Said method comprises the steps of providing (10) a VHDL description of the digital circuit design, performing (12) a logic synthesis, wherein the VHDL description is turned into a design implementation in terms of logic gates, and creating (14) a netlist including the elements of the digital circuit design and the connections between said elements. Said method comprises the further steps of providing (28) a transformation script with at least one transparent storage element (40; 54), wherein said transparent storage element (40; 54) represents a path delay within the digital circuit design, creating (30) a new netlist with the at least one transparent storage elements (40; 54), running (20) a verification, and checking, if the new netlist is clean from a logical and timing point of view.