摘要:
The invention relates to a method for producing an anti-reflection surface on an optical element, said method comprising the following steps: a) the optical element is prepared; b) uncharged, spherical, micellar polymer units comprising an inner core region and an outer shell region are prepared; and c) at least one region of the surface of the optical element is coated with polymer units in such a way that the polymer units are essentially regularly dispersed in a film-type layer over the surface of the optical element. The invention also relates to an optical element having an anti-reflection surface (28a, 28b, 28c) comprising spherical micellar polymer units (16a, 16b, 16c) having an inner core region (18) and an outer shell region (20) and being essentially regularly dispersed in a film-type layer (26a, 26b, 26c) over the surface of the optical element (22). The invention further relates to an optical element having an anti-reflection surface (34, 34a) comprising metal clusters (32, 32a) and/or metal oxide clusters (38, 38) which are essentially regularly distributed over the surface of the optical element (22).
摘要:
The invention relates to a method for the production of micro- and/or nanopore mass arrangements on a substrate including functionalization of the substrate surface in selected areas; deposition of colloidal particles that have the capacity to selectively bond to the functionalized areas of the substrate surface from an aqueous dispersion on the substrate surface, during which an ordered monolayer of the particles forms on the substrate surface; separation of non-bound colloidal particles; freezing of the substrate; and sublimation of the residual water on the substrate in the vacuum, during which the short-range order of the particle monolayer is preserved.
摘要:
A method for creating extensive variations in size or distance in nanostructure patterns on surfaces preferably includes: a) contacting a substrate with a liquid phase containing organic two-block or multi-block copolymer micelles, which are charged with an inorganic metal compound, by immersion into this liquid phase, during which chemically different polymer domains including inorganic metal compounds enclosed in micelles are deposited on the substrate; b) withdrawing the substrate from the liquid phase at a predetermined withdrawing speed, which is varied continuously or gradually, so that a gradient of the lateral separation length of the polymer domains is produced on the substrate surface; c) converting the deposited inorganic metal compounds by an oxidation- or reduction treatment into inorganic nanoparticles and optionally complete or partial removal of the organic polymer by a plasma treatment, wherein positions and lateral separation length of the nanoparticles obtained are determined by those of deposited polymer domains.
摘要:
A method for creating extensive variations in size or distance in nanostructure patterns on surfaces preferably includes: a) contacting a substrate with a liquid phase containing organic two-block or multi-block copolymer micelles, which are charged with an inorganic metal compound, by immersion into this liquid phase, during which chemically different polymer domains including inorganic metal compounds enclosed in micelles are deposited on the substrate; b) withdrawing the substrate from the liquid phase at a predetermined withdrawing speed, which is varied continuously or gradually, so that a gradient of the lateral separation length of the polymer domains is produced on the substrate surface; c) converting the deposited inorganic metal compounds by an oxidation- or reduction treatment into inorganic nanoparticles and optionally complete or partial removal of the organic polymer by a plasma treatment, wherein positions and lateral separation length of the nanoparticles obtained are determined by those of deposited polymer domains.