摘要:
The invention relates to a method for supporting cell change between frequency layers. The method is performed in a UE and/or a RN node of a wireless communication network deploying two frequency layers. The RN node serves a UE in a cell of a first of the two frequency layers. The UE is configured to perform measurements on the first frequency layer, and to exclude measurements on a second of the two frequency layers. The method comprises receiving (610) measurement results from the UE, for measurements performed on a cell of the first frequency layer, determining (620) a location of the UE based on the measurement results, assessing (630) a coverage of a target cell of the second frequency layer based on the location and a coverage map for the two frequency layers, and determining (640) whether to change to the target cell based on the assessment.
摘要:
The present invention relates to a method and apparatus for testing mobile terminals in an OFDMA system, in which all or part of available downlink radio resources in a cell are transmitted. A processing unit in a test apparatus splits a set of contiguous resource blocks into separate contiguous portions. A first contiguous portion of the set of resource blocks is allocated to users of a first type, and a second contiguous portion of the set of resource blocks is allocated to users of a second type. A transmitter in the test apparatus transmits test signals to the users of the first type and the second type using the at least one contiguous set of resource blocks.
摘要:
The present invention relates to a method and apparatus for testing mobile terminals in an OFDMA system, in which all or part of available downlink radio resources in a cell are transmitted. A processing unit in a test apparatus splits the resources used for transmission into contiguous unities in the frequency domain such that one or more of said unities comprise resources allocated to one or more mobile terminals under test, and at least one of said unities comprise resources allocated to virtual users.
摘要:
The invention relates to a method for supporting cell change between frequency layers. The method is performed in a UE and/or a RN node of a wireless communication network deploying two frequency layers. The RN node serves a UE in a cell of a first of the two frequency layers. The UE is configured to perform measurements on the first frequency layer, and to exclude measurements on a second of the two frequency layers. The method comprises receiving (610) measurement results from the UE, for measurements performed on a cell of the first frequency layer, determining (620) a location of the UE based on the measurement results, assessing (630) a coverage of a target cell of the second frequency layer based on the location and a coverage map for the two frequency layers, and determining (640) whether to change to the target cell based on the assessment.
摘要:
The present invention relates to a method and apparatus for testing mobile terminals in an OFDMA system, in which all or part of available downlink radio resources in a cell are transmitted. A processing unit in a test apparatus splits the resources used for transmission into contiguous unities in the frequency domain such that one or more of said unities comprise resources allocated to one or more mobile terminals under test, and at least one of said unities comprise resources allocated to virtual users.
摘要:
A technique for performing Automatic Gain Control (AGC) in a multi-carrier communication system in which transmission gaps are scheduled on a serving carrier to enable temporary tuning to another carrier by a served device is described. A method embodiment of this technique comprises: performing a first AGC procedure in relation to a first signal received on a first carrier during a first transmission gap; determining an AGC configuration for a second procedure based on at least one of channel conditions in relation to the first carrier and a lapsed time since the first transmission gap; and determining if the second AGC procedure can be skipped.
摘要:
A technique for cell signature determination in a cellular communication network is provided. A method implementation of this technique comprises the steps of providing a set of hypothesis signals, each hypothesis signal including a signature hypothesis, receiving a composite signal including a first signal portion carrying a first signature from a first cell and a second signal portion carrying a second signature from a second cell, wherein the first signal portion and the second signal portion overlap at least partially in time, and obtaining a correlation result by correlating the composite signal with each hypothesis signal. After the first signature has been determined, a set of phantom signatures associated with the first signature is provided. The phantom signatures represent artifacts from the first signal portion in the correlation result. Finally, the second signature is determined based on the correlation result taking into account the set of phantom signatures associated with the first signature.
摘要:
One aspect of the present invention is method for signal quality measurement that provides significant improvements in accuracy, at least in certain scenarios where conventional approaches to such measurements are vulnerable to inaccuracies. Non-limiting example scenarios include instances where a communication network uses downlink carriers in neighboring cells with overlapping frequencies but with different bandwidths and/or center frequencies. In such cases, there may be uneven interference across the carrier bandwidth, e.g., arising from neighboring carriers operating at different center frequencies and/or at different bandwidths. Thus, making the signal quality measurement for a given carrier depend on a combination of measurements taken at different frequency regions of the carrier provides a clearer, more accurate picture of the interference or loading conditions bearing on that carrier.
摘要:
Embodiments herein relate to a user equipment, UE, configured to performing measurements in a wireless communication network. The UE acquires system information, SI, of a cell during autonomous gaps, and also performs at least one non-SI measurement related to a serving and/or to one or more neighbor cells during a time period comprising the autonomous gaps. The embodiments also relate to a serving network node, a target network node and respective method therein.
摘要:
A method of performing Automatic Gain Control, AGC, in a receiver of a device is provided. The device is served on a serving carrier of a multi-carrier communication network. Measurement gaps are scheduled on the serving carrier for inter-carrier measurements on a non-serving carrier. The method comprises the step of determining a first time interval, in which a predefined signal portion is transmitted on the non-serving carrier; the step of estimating, for the first time interval, received signal power on the non-serving carrier; the step of computing a receiver gain based on the estimate signal power; the step of performing, over a second time interval, an inter-carrier measurement on the non-serving carrier; and the step of applying the receiver gain to the receiver after the second time interval.