摘要:
Described herein are fetal and/or maternal monitoring devices, systems and methods using UWB medical radar. These devices and systems may include a UWB sensor providing high-resolution and reliable simultaneous monitoring of multiple indicators of fetal and/or maternal health, such as fetal heart rate, fetal heart rate variability, fetal respiration, fetal gross body movement, maternal contractions, maternal heart rate, maternal respiration, and other derivative parameters during virtually all stages of pregnancy and during delivery. The sensor allows novel collection of physiological data using a single sensor or multiple sensors to develop individual and aggregate normal motion indices for use in determining when departure from normal motion index is indicative of fetal or maternal distress.
摘要:
Described herein are fetal and/or maternal monitoring devices, systems and methods using UWB medical radar. These devices and systems may include a UWB sensor providing high-resolution and reliable simultaneous monitoring of multiple indicators of fetal and/or maternal health, such as fetal heart rate, fetal heart rate variability, fetal respiration, fetal gross body movement, maternal contractions, maternal heart rate, maternal respiration, and other derivative parameters during virtually all stages of pregnancy and during delivery. The sensor allows novel collection of physiological data using a single sensor or multiple sensors to develop individual and aggregate normal motion indices for use in determining when departure from normal motion index is indicative of fetal or maternal distress.
摘要:
A system and method for non-invasive and continuous measurement of cardiac chamber volume and derivative parameters including stroke volume, cardiac output and ejection fraction comprising an ultrawideband radar system having a trans-mitting and receiving antenna for applying ultrawideband radio signals to a target area of a subject's anatomy wherein the receiving antenna collects and transmits signal returns from the target area which are then delivered to a data processing unit, such as an integrated processor or PDA, having software and hardware used to process the signal returns to produce a value for cardiac stroke volume and changes in cardiac stroke volume supporting multiple diagnostic requirements for emergency response and medical personnel whether located in the battlefield, at a disaster site or at a hospital or other treatment facility.