摘要:
A micromechanical assembly having a holder, a drive frame which has at least one energizable coil device disposed at least one of on and in the drive frame and which is joined to the holder via at least one frame spring, a mirror element that is at least partially framed by the drive frame and is suspended from the drive frame by a first mirror spring and a second mirror spring, the mirror element being disposed between the two mirror springs and being adjustable about a mirror axis of rotation in relation to the drive frame, and the mirror element being suspended from the drive frame asymmetrically relative to the mirror axis of rotation. A method for manufacturing a micromechanical assembly is also described. A method for operating a micromechanical assembly is also described.
摘要:
A micromirror including a first layer having a first main extension plane, and a second layer having a second main extension plane, the first main extension plane and the second main extension plane being situated parallel to one another, the first layer and the second layer being sectionally connected to one another via at least one connection area, at least one spring element being implemented in the first layer, a movably suspended mirror plate being implemented in the second layer, the mirror plate having a mirror surface on a first side parallel to the main extension plane and being connected on an opposing second side via the connection area to an anchor of the spring element, a part of the spring element on the second side of the mirror plate being movably situated in relation to the mirror plate. A two-mirror system having such a micromirror is also provided.
摘要:
A micromechanical component has an outer stator electrode component and an outer actuator electrode component which is connected to a holder via at least one outer spring, an adjustable element being adjustable about a first rotation axis by application of a first voltage between the outer actuator electrode component and the outer stator electrode component, and having an inner stator electrode component and an inner actuator electrode component having a first web with at least one electrode finger disposed thereon, the adjustable element being adjustable about a second rotation axis by application of a second voltage between the at least one electrode finger of the inner actuator electrode component and the inner stator electrode component, and the inner actuator electrode component being connected to the outer actuator electrode component via an intermediate spring which is oriented along the second rotation axis. Also described is a production method for a micromechanical component.
摘要:
A connecting structure for micromechanical oscillating devices, in particular micromechanical oscillating mirrors. The connecting structure is at least indirectly connectable to a micromechanical oscillating structure, on the one hand, and to an elastic element, on the other hand, for measuring torsions of the micromechanical oscillating structure, and includes at least one, in particular at least two, preferably three, legs which are situated parallel to a rotation axis of the micromechanical oscillating structure, and at least one further leg which is situated perpendicularly to the rotation axis. The extension of the connecting structure parallel to the rotation axis has at least two-and-a-half times, in particular three times, the extension of the connecting structure perpendicular to the rotation axis, and includes at least one resistance element for measuring torsions of the connecting structure, the resistance element being situated in the area of increased mechanical stress when the connecting structure undergoes torsion.
摘要:
A micromechanical component includes: an adjustable element connected to a holder at least via a spring; a first sensor device with at least one first piezo-resistive sensor element, which first sensor device provides a first sensor signal relating to a first mechanical stress, the first piezo-resistive sensor element being situated on or in an anchoring region of the spring; and a second sensor device with at least one second piezo-resistive sensor element, which second sensor device provides a second sensor signal relating to a second mechanical stress, the second piezo-resistive sensor element being situated on or in an anchoring region of the spring.
摘要:
A micromechanical component includes: an adjustable element connected to a holder at least via a spring; a first sensor device with at least one first piezo-resistive sensor element, which first sensor device provides a first sensor signal relating to a first mechanical stress, the first piezo-resistive sensor element being situated on or in an anchoring region of the spring; and a second sensor device with at least one second piezo-resistive sensor element, which second sensor device provides a second sensor signal relating to a second mechanical stress, the second piezo-resistive sensor element being situated on or in an anchoring region of the spring.
摘要:
A connecting structure for micromechanical oscillating devices, in particular micromechanical oscillating mirrors. The connecting structure is at least indirectly connectable to a micromechanical oscillating structure, on the one hand, and to an elastic element, on the other hand, for measuring torsions of the micromechanical oscillating structure, and includes at least one, in particular at least two, preferably three, legs which are situated parallel to a rotation axis of the micromechanical oscillating structure, and at least one further leg which is situated perpendicularly to the rotation axis. The extension of the connecting structure parallel to the rotation axis has at least two-and-a-half times, in particular three times, the extension of the connecting structure perpendicular to the rotation axis, and includes at least one resistance element for measuring torsions of the connecting structure, the resistance element being situated in the area of increased mechanical stress when the connecting structure undergoes torsion.
摘要:
A micromechanical component and a method for producing a micromechanical component are described. The component has: a frame; a plate spring that is connected to the frame and that has a front side and a rear side facing away from the front side; a mirror element that is situated on the front side of the plate spring and is connected to the front side of the plate spring in such a way that the mirror element is suspended on the frame so as to be capable of displacement; and at least one piezoelectric strip that is connected to the rear side of the plate spring; the plate spring being elastically deformable through the application of an electrical voltage to the at least one piezoelectric strip in order to displace the mirror element.
摘要:
A micromechanical component, in particular a pressure sensor, including a substrate that has a membrane region, a surrounding region of the membrane region, at least one measuring resistance provided in the membrane region and modifiable by deformation of the membrane region, and a corresponding evaluation circuit provided in the surrounding region. An interference effect on the measuring resistance is producible by way of a deformation of parts, in particular conductor paths, of the evaluation circuit relative to the substrate. The invention also creates a corresponding equalization method on a test chip or as an individual final equalization.
摘要:
A micromechanical component has a light window; a mirror element adjustable with respect to the light window from a first position into at least one second position about at least one axis of rotation, an optical sensor having a detection surface designed to ascertain a light intensity on the detection surface and to provide a corresponding sensor signal. The light window, the mirror element in the first position and the detection surface are situated in relation to one another in such a way that a portion of a light beam reflected on the light window strikes the detection surface at least partially; and an evaluation unit designed to define, on the basis of the sensor signal, information regarding an instantaneous position of the mirror element and/or an instantaneous intensity of the deflected light beam.