摘要:
A system, apparatus and method employing carbon nanotubes on substrates such as silicon, titanium, copper, stainless steel and other substrates, where the carbon nanotubes are blacker than existing paints and coatings, thereby providing an exponential increase in stray light suppression depending on the number of bounces of such treated surfaces. Additionally, the present invention is directed to techniques to better absorb and radiate unwanted energies. Further, the alternate substrates offer strength of material for numerous components and in numerous physical applications. The present invention is also directed to techniques for improving the adhesion of the nanotubes to the alternate substrate materials and also extending the wavelength of operation from the near ultraviolet to the far infrared portion of the spectrum (0.2 microns to 120 microns wavelength).
摘要:
Disclosed herein is a method of growth of enhanced adhesion MWCNTs on a substrate, referred to as the HGTiE process, the method comprising: chemical vapor deposition of an adhesive underlayer composed of alumina on a substrate composed of titanium or similar; chemical vapor deposition of a catalyst such as a thin film of iron on top of the adhesive underlayer; pretreatment of the substrate to hydrogen at high temperature; and exposure of the substrate to a feedstock gas such as ethylene at high temperature. The substrate surface may be roughened before placement of an adhesive layer through mechanical grinding or chemical etching. Finally, plasma etching of the MWCNT film may be performed with oxygen plasma. This method of growth allows for high strength adhesion of MWCNTs to the substrate the MWCNTs are grown upon.
摘要:
A system, apparatus and method employing carbon nanotubes on substrates such as silicon, titanium, copper, stainless steel and other substrates, where the carbon nanotubes are blacker than existing paints and coatings, thereby providing an exponential increase in stray light suppression depending on the number of bounces of such treated surfaces. Additionally, the present invention is directed to techniques to better absorb and radiate unwanted energies. Further, the alternate substrates offer strength of material for numerous components and in numerous physical applications. The present invention is also directed to techniques for improving the adhesion of the nanotubes to the alternate substrate materials and also extending the wavelength of operation from the near ultraviolet to the far infrared portion of the spectrum (0.2 microns to 120 microns wavelength).
摘要:
Disclosed herein is a system for an apodization mask composed of multi-walled carbon nanotubes (MWCNTs) for absorbing unwanted stray light. An apodization mask is a precise pattern or shape that is mathematically derived using light scattering measurement techniques to achieve optimal light absorption.Also disclosed herein is an apparatus for a duplex telescope with stray light suppressing capabilities comprising: a primary mirror for transmitting and receiving light; a secondary mirror for defocusing transmitted light onto the primary mirror and for focusing received light; a photodetector which receives light; a laser transmitter which transmits light; and an apodization mask for absorbing stray transmitted light.
摘要:
Disclosed herein is a system for an apodization mask composed of multi-walled carbon nanotubes (MWCNTs) for absorbing unwanted stray light. An apodization mask is a precise pattern or shape that is mathematically derived using light scattering measurement techniques to achieve optimal light absorption.Also disclosed herein is an apparatus for a duplex telescope with stray light suppressing capabilities comprising: a primary mirror for transmitting and receiving light; a secondary mirror for defocusing transmitted light onto the primary mirror and for focusing received light; a photodetector which receives light; a laser transmitter which transmits light; and an apodization mask for absorbing stray transmitted light.
摘要:
A panel (10, 60) applicable to siding, soffits and related construction elements used as coverings for houses, buildings and like structures includes new, improved intercooperating gripping portions (18, 28 and 62, 64) at first (16) and second (26) edges for effectively locking panels of successive courses. The gripping portion at the first edge comprises a nail hem of double thickness for nailing the panel to an adjacent structure and there is an insulative layer (66) providing a wind resistance medium.
摘要:
Aspects of the present disclosure involve a system and method for suppressing a Poisson spot. A Poisson spot is a bright spot in the geometrical shadow of circular/spherical shapes. A broad class of telescopes that involve simultaneous transmit and receive require suppression of the reflected light from the secondary mirror on the detector. In one embodiment, coronagraphy petal-shaped masks are fabricated using photolithography and wire-EDM for the suppression of the Poisson spot. The petal-shaped masks can be designed and fabricated to operate at varying Fresnel numbers and petal tip radius-of-curvature (ROC).
摘要:
A polishing fixture assembly for an optical element includes a first composite panel, a second composite panel, and a core member sandwiched between the first composite panel and the second composite panel and coupling the first composite panel to the second composite panel. At least one mirror mounting insert is coupled to each of the first and second composite panels.
摘要:
An efficient solar collector that uses a collector panel formed of strips similar to conventional aluminum siding includes air distribution channels along opposite edges of the collector panel. These air distribution channels are formed of enlarged collector panel strips and form headers. Openings are formed through the wall on which the siding is mounted adjacent each of these channels so air from the interior of the building may flow through one or more lower openings into one of the channels, then through the space between the exterior side of the wall and the panel into the other channel, and through the other openings to return to the interior of the building. The air is heated indirectly by the solar radiation impinging on the collector panel as the air flows through the space between the wall and the panel. To increase the efficiency of the collector, a blower can be installed in one of the openings to increase the air flow through the collector.