Abstract:
An implantable electrical lead is provided. The electrical lead comprises an electrically insulative, flexible, elongated lead body having a proximal end and a distal end, an electrical contact carried by the distal end of the lead body, an electrical terminal carried by the proximal end of the lead body, an electrical conductor axially extending within the lead body between the electrical contact and the electrical terminal, and a stiffening tube extending within the proximal end of the lead body from a point proximal to the terminal to a point distal to the terminal and proximal to the electrode. An implantable lead assembly kit comprises the implantable electrical lead, and a connector configured for firmly receiving the proximal end of the lead body. A method of implanting the electrical lead comprises introducing the electrical lead into a patient.
Abstract:
A lead anchor includes a body defining a lead lumen having a first opening and a second opening through which a lead can pass. The body further defines a transverse lumen that intersects the lead lumen. An exterior member is disposed around at least a portion of the body. The exterior member is formed of a biocompatible material. A fastener anchors the lead to the body through the transverse lumen by deforming a portion of the lead. The transverse lumen is configured and arranged to receive the fastener. At least at least two suture tabs extend from the exterior member and are configured and arranged for receiving a suture to suture the lead anchor to patient tissue.
Abstract:
A connector assembly includes a lead or a lead extension, a connector, and a retention assembly disposed in the connector. The connector includes a connector housing defining a port at a distal end of the connector, and a plurality of connector contacts disposed in the connector housing. The port is configured and arranged for receiving a proximal end of the lead or the lead extension. The connector contacts are configured and arranged to couple to at least one terminal disposed on the proximal end of the lead or the lead extension. The retention assembly includes a retention mechanism that can be engaged and reversibly disengaged without the use of tools beyond conventional operating-room surgical instruments.
Abstract:
A burr hole plug comprises a plug base configured for being mounted around a cranial burr hole. The plug base includes an aperture through which an elongated medical device exiting the burr hole may pass. The burr hole plug further comprises a retainer configured for being mounted within the aperture of the plug base. The retainer includes a retainer support, a slot formed in the retainer support for receiving the medical device, and a clamping mechanism having a movable clamping element and a cam configured for being rotated relative to the retainer support to linearly translate the movable clamping element into the slot, thereby securing the medical device. The retainer further comprises another clamping mechanism having another movable clamping element and another cam configured for being rotated relative to the retainer support to linearly translate the other movable clamping element, thereby laterally securing the retainer within the plug base.
Abstract:
A multi-contact connector includes a connector body having a substantially-tubular shape with a longitudinal surface and a distal end. The connector body includes at least one lumen and defines at least one port. At least one of the lumens extends from the distal end of the connector body to at least one of the ports disposed on the longitudinal surface of the connector body. The multi-contact connector also includes a flexible-circuit sleeve with a substantially-tubular shape and an exterior surface. The flexible-circuit sleeve includes a plurality of contact terminals disposed on the exterior surface and at least one slot extending through the flexible-circuit sleeve to allow contact with at least one of the contact terminals from inside the flexible-circuit sleeve. The flexible-circuit sleeve is configured and arranged to be disposed over at least a portion of the connector body.
Abstract:
An electrical stimulation lead includes a plurality of conductive contacts disposed at a distal end and a proximal end of a lead body. The plurality of conductive contacts includes a plurality of electrodes and a plurality of terminals. At least one of the conductive contacts is a first conductive contact that includes at least one adhesive aperture defined between an inner surface and an outer surface of the at least one conductive contact. A plurality of conductors each electrically couple at least one of the electrodes to at least one of the terminals. Each first conductive contact has a conductor associated with, and electrically coupled to that first conductive contact. The adhesive is disposed in proximity to the at least one adhesive aperture of at least one first conductive contact to adhesively couple that first conductive contact to the at least one associated conductor.
Abstract:
A lead introducer includes a multi-piece insertion needle insertable into a splitable member. The multi-piece insertion needle includes an outer insertion needle that defines an open channel that extends along substantially entirely a length of the outer insertion needle and an inner insertion needle configured and arranged for insertion into the open channel of the outer insertion needle. The splitable member includes at least two pull-apart tabs and at least one weakened region extending along at least a portion of a length of the splitable member from between the at least two pull-apart tabs. The at least one weakened region is configured and arranged for separating when the at least two pull-apart tabs are pulled apart.
Abstract:
A lead connection system includes a connector housing. A plurality of lead retainers disposed in the connector housing are configured and arranged to removably attach to a proximal end of one of a received plurality of leads. The plurality of lead retainers include at least one of a slidable drawer and at least one pivotable hinged panel. A plurality of connector contacts are configured and arranged for making electrical contact with one or more of the terminals of one or more of the plurality of received leads. A single connector cable has a distal end that is electrically coupled to the plurality of connector contacts and a proximal end that is configured and arranged for insertion into a trial stimulator. A cable connector is electrically coupled, via the connector contacts, to at least one terminal of each of the received plurality of leads.
Abstract:
A lead anchor includes a body defining a lead lumen having a first opening and a second opening through which a lead can pass. The body further defines a transverse lumen that intersects the lead lumen. An exterior member is disposed around at least a portion of the body. The exterior member is formed of a biocompatible material. A fastener anchors the lead to the body through the transverse lumen by deforming a portion of the lead. The transverse lumen is configured and arranged to receive the fastener. At least one suture element is defined by the exterior member and is configured and arranged for receiving a suture to suture the lead anchor to patient tissue.
Abstract:
An insertion kit for percutaneously implanting an electrical stimulating paddle lead into a patient includes a paddle lead introducer. The paddle lead introducer facilitates percutaneous implantation of a paddle lead into the patient. The paddle lead introducer includes a sheath and a dilator. The sheath is insertable into the patient. The sheath is configured and arranged to receive a paddle lead during implantation of the paddle lead into the patient. The sheath can divide into at least two parts for removal of the sheath from the paddle lead upon implantation of the paddle lead. The dilator is insertable into the sheath. A first end of the dilator defines an aperture at a tip of the first end. The first end of the dilator has a transverse circumference that increases from the tip towards a second end.