摘要:
This invention provides principles, methods and compositions for ascertaining the mechanism of action of pharmacologically important compounds in the context of network biology, across the entire scope of the complex pathways of living cells. Importantly, the principles, methods and compositions provided allow a rapid assessment of the on-pathway and off-pathway effects of lead compounds and drug candidates in living cells, and comparisons of lead compounds with well-characterized drugs and toxicants to identify patterns associated with efficacy and toxicity. The invention will be useful in improving the drug discovery process, in particular by identifying drug leads with desired safety and efficacy and in effecting early attrition of compounds with potential adverse effects in man.
摘要:
The screening system utilizes dynamic measurements of pathway activity to detect the activities of drugs within cellular pathways. The methods of the invention can be used to identify previously unknown drug activities and therapeutic uses, even for drugs that have been well characterized with standard biochemical assays. We demonstrated the utility of the invention by screening a portion of the known pharmacopeia. We identified dozens of drugs, previously or currently marked for a variety of indications, with surprising and previously-unsuspected activity against ‘hallmark’ cancer pathways. We also showed that over 20 of these drugs indeed have anti-proliferative activity in human tumor cells, underscoring the utility and predictability of the screening system. The methodology will extend the utility of the current pharmacopeia and provide the basis for de novo discovery of drugs with a broad range of therapeutic indications.
摘要:
The invention features a method for treating a patient having a cancer or other neoplasm, by administering to the patient one of the following drugs or a metabolite or analog thereof: cinnarizine; desipramine; fenofibrate; flunarizine; isoreserpine; nicardipine; promazine; promethazine; suloctidil; terfenadine; atorvastatin; mebeverine; sertraline; albendazole; bepridil; bergaptene; clomiphene; dichlorophene; droperidol; mebendazole; meclocycline; metergoline; ramiphenazone; sanguinarine; dipyrone; nicardipine; or 4-dimethylaminoantipyrine.
摘要:
The present invention provides protein fragment complementation assays for drug discovery, in particular to identify compounds that activate or inhibit cellular pathways. Based on the selection of an interacting protein pair combined with an appropriate PCA reporter, the assays may be run in high-throughput or high-content mode and may be used in automated screening of libraries of compounds. The interacting pair may be selected by cDNA library screening; by gene-by-gene interaction mapping; or by prior knowledge of a pathway. Fluorescent and luminescent assays can be constructed using the methods provided herein. The selection of suitable PCA reporters for high-throughput or high-content (high-context) assay formats is described for a diversity of reporters, with particular detail provided for examples of monomeric enzymes and fluorescent proteins. Methods are described for constructing such assays for one or more steps in a biochemical pathway; testing the effects of compounds from combinatorial, natural product, peptide, antibody, nucleic acid or other diverse libraries on the protein or pathway(s) of interest; and using the results of the screening to identify specific compounds that activate or inhibit the protein or pathway(s) of interest. Single-color and multi-color assays are disclosed. Further disclosed are universal expression vectors with cassettes that allow the rapid construction of assays for a large and diverse number of gene/reporter combinations. The development of such assays is shown to be straightforward, providing for a broad, flexible and biologically relevant platform for drug discovery.
摘要:
The instant invention provides a method for establishing safety profiles for chemical compounds, as well as pharmacological profiling said method comprising (A) testing the effects of said chemical compounds on the amount and/or post-translational modifications of two or more macromolecules in intact cells; (B) constructing a pharmacological profile based on the results of said tests; and (C) comparing said profile to the profile(s) of drugs with established safety characteristics. Additionally, the invention is also directed to a composition comprising an assay panel, said panel comprising at least one high-content assay for the amount and/or post-translational modification of a protein and at least one high-content assay for the amount and/or subcellular location of a protein-protein interaction.
摘要:
The present invention provides protein fragment complementation assays for drug discovery, in particular to identify compounds that activate or inhibit cellular pathways. Based on the selection of an interacting protein pair combined with an appropriate PCA reporter, the assays may be run in high-throughput or high-content mode and may be used in automated screening of libraries of compounds. The interacting pair may be selected by cDNA library screening; by gene-by-gene interaction mapping; or by prior knowledge of a pathway. Fluorescent and luminescent assays can be constructed using the methods provided herein. The selection of suitable PCA reporters for high-throughput or high-content (high-context) assay formats is described for a diversity of reporters, with particular detail provided for examples of monomeric enzymes and fluorescent proteins. Methods are described for constructing such assays for one or more steps in a biochemical pathway; testing the effects of compounds from combinatorial, natural product, peptide, antibody, nucleic acid or other diverse libraries on the protein or pathway(s) of interest; and using the results of the screening to identify specific compounds that activate or inhibit the protein or pathway(s) of interest. Single-color and multi-color assays are disclosed. Further disclosed are universal expression vectors with cassettes that allow the rapid construction of assays for a large and diverse number of gene/reporter combinations. The development of such assays is shown to be straightforward, providing for a broad, flexible and biologically relevant platform for drug discovery.
摘要:
The present invention provides protein fragment complementation assays for drug discovery, in particular to identify compounds that activate or inhibit cellular pathways. Based on the selection of an interacting protein pair combined with an appropriate PCA reporter, the assays may be run in high-throughput or high-content mode and may be used in automated screening of libraries of compounds. The interacting pair may be selected by cDNA library screening; by gene-by-gene interaction mapping; or by prior knowledge of a pathway. Fluorescent and luminescent assays can be constructed using the methods provided herein. The selection of suitable PCA reporters for high-throughput or high-content (high-context) assay formats is described for a diversity of reporters, with particular detail provided for examples of monomeric enzymes and fluorescent proteins. Methods are described for constructing such assays for one or more steps in a biochemical pathway; testing the effects of compounds from combinatorial, natural product, peptide, antibody, nucleic acid or other diverse libraries on the protein or pathway(s) of interest; and using the results of the screening to identify specific compounds that activate or inhibit the protein or pathway(s) of interest. Single-color and multi-color assays are disclosed. Further disclosed are universal expression vectors with cassettes that allow the rapid construction of assays for a large and diverse number of gene/reporter combinations. The development of such assays is shown to be straightforward, providing for a broad, flexible and biologically relevant platform for drug discovery.
摘要:
The present invention provides protein single-color and multi-color protein fragment complementation assays for drug discovery, in particular to identify compounds that activate or inhibit cellular pathways. Based on the selection of an interacting protein pair combined with an appropriate PCA reporter such as monomeric enzymes and fluorescent proteins, the assays may be run in high-throughput or high-content mode and may be used in automated screening of libraries of compounds. Methods are described for constructing such assays for one or more steps in a biochemical pathway; testing the effects of compounds from combinatorial, natural product, peptide, antibody, nucleic acid or other diverse libraries on the protein or pathway(s) of interest; and using the results of the screening to identify specific compounds that activate or inhibit the protein or pathway(s) of interest. The development of such assays provides for a broad, flexible and biologically relevant platform for drug discovery.
摘要:
A switching regulator and control method for the same. The switching regulator employs a hybrid mode. A ramp voltage signal is added to the current sense signal to make the ramp voltage signal overtake the current information when the duty cycle becomes low.
摘要:
The present invention relates to a circuit and method of generating a ramp compensation voltage as might be used in a switching regulator. The ramp compensation voltage comprises: a charging current generating circuit configured to receive a switching signal having a frequency of fs, a duty cycle of D and a period of Ts, the charging current generating circuit generating a charging current in direct proportion to f s ( 1 - D ) DTs ; and a voltage generating circuit for generating a quadratic ramp compensation voltage by means of the charging current. The resulting ramp compensation voltage enables the switching regulator to operate over a broad range of duty cycles. The generated ramp compensation voltage has an amplitude as low as possible, the generated compensation slope approximates to the target compensation slope as close as possible, and over compensation at low duty cycles is reduced as far as possible.