摘要:
A radio receiver, optionally used in conjunction with a handheld audio system, includes a radio stage for processing a received radio signal into an audio signal. An audio stage produces an audio output, based on the audio signal. An overload monitor detects an overload condition in the radio stage and generates an overload signal in response to the detected overload condition. A controller controls the audio output in response to the overload signal.
摘要:
A sample rate converter includes an up-conversion module, a linear interpolator module, and a parameter control module. The up-conversion module is operable to convert a first data rate to a second data rate of a data signal. The linear interpolator module is operable to receive the data signal at the second data rate and to produce therefrom a data signal at a desired rate based on at least one parameter. The parameter control module is operable to produce the at least one parameter based on the desired rate.
摘要:
A method for managing power of a battery-powered handheld audio device by receiving an indicia of signal quality for a received continuous-time radio signal. The method compares the indicia of signal quality to a signal quality threshold. Upon a favorable comparison, enacting a first analog signal conditioning setting. Upon an unfavorable comparison, enacting a second analog signal conditioning setting. The method further provides, upon the favorable comparison, disabling a digital filtering operation, and upon the unfavorable comparison, enabling the digital filtering operation.
摘要:
A method for adjusting automatic gain control (AGC) of a radio receiver begins when a primary AGC module establishes an AGC setting for the radio receiver to produce a primary AGC setting. The method continues when a supervisory AGC module compares performance of the radio receiver utilizing the primary AGC setting with a plurality of performance thresholds. The method continues with the supervisory AGC module adjusting the primary AGC setting to produce adjusted AGC setting when the performance of the radio receiver utilizing the primary AGC setting compares unfavorable with a first performance threshold of the plurality of performance thresholds. The method continues with the supervisory AGC module overwriting the primary AGC setting with alternative AGC setting when the performance of the radio receiver utilizing the primary AGC setting compares unfavorable with a second performance threshold of the plurality of performance thresholds.
摘要:
A receiver includes a mixing module for mixing an input signal by at least one mixing sequence to produce a mixed signal. The mixed signal is filtered to produce a first filtered signal. A first downsampler downsamples the first filtered signal to produce a first decimated signal, wherein the decimation period is not a multiple of the mixing period.
摘要:
A low power radio transmitter includes an intermediate frequency stage, signal-to-pulse conversion module, and a power amplifier. The intermediate frequency stage up-converts the frequency of a base-band digital signal into an N-bit signal at the intermediate frequency. The signal-to-pulse conversion module converts the N-bit signal at the intermediate frequency into a pulse signal of M-bits at the radio frequency. As such, the signal-to-pulse conversion module is taking an N-bit signal (e.g., an 8-bit digital signal) and converting it into an M-bit pulse signal (e.g., a 1-bit pulse stream). Accordingly, the M-bit signal at the radio frequency is essentially a square-wave, which has a peak to average ratio of zero, is subsequently amplified by the power amplifier.
摘要:
A radio receiver includes a low-noise amplifier, pulse-to-signal conversion module, and intermediate frequency stage. The low-noise amplifier is operably coupled to receive and amplify an M-bit signal at a radio frequency. The M-bit signal at a radio frequency is representative of a pulse signal that is carried on a radio frequency. The pulse-to-signal conversion module demodulates the M-bit signal to produce an N-bit signal at an intermediate frequency. For example, the pulse-to-signal conversion module performs pulse-width demodulation, pulse-density demodulation, or pulse-position demodulation to recapture the N-bit signal. The intermediate frequency stage steps down the frequency of the N-bit signal to produce a base-band digital signal.
摘要:
A method for signal strength detection begins by comparing a signal strength representation of a signal with a signal strength representation of a reference signal. The method continues by adjusting, when the signal strength representation of the signal compares unfavorably with the signal strength representation of the reference signal, at least one of the signal strength representation of the signal and the signal strength representation of the reference signal until the signal strength representation of the signal compares favorably with the signal strength representation of the reference signal. The method continues by determining signal strength of the signal based on the adjusting of the signal strength representation of the signal and signal strength of the reference signal.
摘要:
An integrated circuit includes a radio receiver for receiving a received radio signal having a plurality of channel signals, each of the plurality of channel signals being modulated at one of a corresponding plurality of carrier frequencies. The radio receiver converts a selected one of the plurality of channel signals into a demodulated signal. An interface clock generator generates a first interface clock at a first interface clock frequency that varies based on the selected one of the plurality of channel signals. The first interface clock frequency, and integer multiples of the first clock frequency are not substantially equal to the carrier frequency of the selected one of the plurality of channel signals. A driver module drives a device interface with a device based on the first interface clock.
摘要:
The present invention provides a method to adjustably sample a first digitized signal having a first data rate to produce a second digitized signal having a second data rate. This involves processing the second digitized signal to produce an output signal having a timing component contained therein. An error sensing module determines a timing error between the timing component and a digitized reference period. Then this timing error is used to produce a feedback signal that is applied to the sample timing of the first digitized signal. This allows the second digitized signal to be processed using a time domain associated with the second data rate.