摘要:
Certain embodiments of the present disclosure provide a method for frequency-domain gain control in system utilizing orthogonal frequency division multiplexing (OFDM) multiple input multiple output (MIMO). The proposed method reduces the complexity of the system while maximizing the internal accuracy of the OFDM MIMO decoder and preserving the performance of the system.
摘要:
Providing for reduced complexity or improved accuracy in de-mapping received wireless data streams for multi-channel wireless communication is described herein. By way of example, a low-complexity likelihood algorithm can be employed to de-map data bits from the wireless data streams. In one particular example, the likelihood algorithm can approximate a received bit with a subset of received wireless symbols correlated the bit, reducing algorithm complexity. In other examples, a limited set of received wireless symbols can be employed for the subset, further reducing algorithm complexity. According to at least one other example, logarithmic terms of the algorithm can be approximated with non-logarithmic functions, such as a look-up table, series expansion, polynomial approximation, or the like. These approximations can enhance symbol de-mapping accuracy while maintaining or improving processing overhead for a wireless receiver.
摘要:
Providing for reduced complexity or improved accuracy in de-mapping received wireless data streams for multi-channel wireless communication is described herein. By way of example, a low-complexity likelihood algorithm can be employed to de-map data bits from the wireless data streams. In one particular example, the likelihood algorithm can approximate a received bit with a subset of received wireless symbols correlated the bit, reducing algorithm complexity. In other examples, a limited set of received wireless symbols can be employed for the subset, further reducing algorithm complexity. According to at least one other example, logarithmic terms of the algorithm can be approximated with non-logarithmic functions, such as a look-up table, series expansion, polynomial approximation, or the like. These approximations can enhance symbol de-mapping accuracy while maintaining or improving processing overhead for a wireless receiver.
摘要:
Certain embodiments of the present disclosure provide a method for frequency-domain gain control in system utilizing orthogonal frequency division multiplexing (OFDM) multiple input multiple output (MIMO). The proposed method reduces the complexity of the system while maximizing the internal accuracy of the OFDM MIMO decoder and preserving the performance of the system.
摘要:
In the basic transform domain (linear filtering interpolation) technique for channel estimation at the receiver in a wireless communication system, the improvement of providing channel estimation at the receiver with computational efficiency, comprising: extending the pilot support to move the effective edges of the pilot data further from the channel span of interest, that corresponds to data transmission.
摘要:
In the basic transform domain (linear filtering interpolation) technique for channel estimation at the receiver in a wireless communication system, the improvement of providing channel estimation at the receiver with computational efficiency, comprising: extending the pilot support to move the effective edges of the pilot data further from the channel span of interest, that corresponds to data transmission.
摘要:
Aspects of the present disclosure relate to wireless communications and techniques and apparatus for downlink flow control at the physical layer of a user equipment (UE). Aspects generally include monitoring one or more parameters related to the UE and intentionally reducing channel quality based on the one or more parameters to trigger downlink flow control. According to aspects, channel quality may be reduced by degrading receiver performance and/or intentionally adding noise to a signal.
摘要:
This invention teaches to the details of an interference canceling receiver for canceling intra-cell and inter-cell interference in coded, multiple-access, spread spectrum transmissions that propagate through frequency selective communication channels to a multiplicity of receive antennas. The receiver is designed or adapted through the repeated use of symbol-estimate weighting, subtractive cancellation with a stabilizing step-size, and mixed-decision symbol estimates. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware either within the RAKE (i.e., at the finger level) or outside the RAKE (i.e., at the user or subchannel symbol level). Embodiments may be employed in user equipment on the forward link or in a base station on the reverse link. It may be adapted to general signal processing applications where a signal is to be extracted from interference.
摘要:
Techniques for performing time tracking in a communication system utilizing a cyclic prefix are described. In an aspect, a receiver may detect for large timing errors based on early and late received samples obtained with early and late FFT windows, respectively. The receiver may derive first and second channel impulse response (CIR) estimates based on the early and late received samples, respectively, determine an early channel energy based on the first CIR estimate, determine a late channel energy based on the second CIR estimate, compute an update amount based on the early and late channel energies, and update the FFT window position based on the update amount. In another aspect, the receiver may perform time tracking with an inner time tracking loop (TTL) and an outer TTL. The receiver may update the FFT window position in coarse steps with the outer TTL and in fine steps with the inner TTL.
摘要:
An OFDMA-MIMO receiver performs a recursive interference cancellation across several correlated subbands and several receive antenna elements to demodulate complex source symbols for several users that have been coded across several subbands and transmit antennas. The iterative parallel interference canceller (PIC) is configured to work in the presence of both spatial and frequency structure introduced by the transmitter space-frequency mapping and the actual frequency selective wireless channel. The interference canceller uses mixed decisions, confidence weights, and stabilizing step sizes in a PIC receiver, which may be used with a successive decoding architecture in a receiver that employs a combination of modulation level interference cancellation with successive decoding.