Abstract:
An arc discharge detecting circuit includes; a voltage dividing part which divides a driving voltage provided to a light source, a detecting part which includes a loop-shaped wiring spaced apart from the voltage dividing part and which detects a current corresponding to an arc discharge flowing through the voltage dividing part using a coupling capacitance generated between the loop-shaped wiring of the detecting part and a wiring of the voltage dividing part, and an output part connected to the detecting part to output a detection voltage corresponding to the arc discharge. Accordingly, the arc discharge detecting circuit may improve a sensitivity of detecting an arc discharge as a current source type using the coupling capacitors, a design may be simplified, and manufacturing costs may be decreased.
Abstract:
A method of driving a light source includes; converting an externally supplied direct current voltage into a first alternating current voltage, boosting the first alternating current voltage to a second alternating current voltage having a higher voltage than the first alternating current voltage, turning on the light source using the second alternating current voltage, detecting an arc noise detection voltage by adding arc noise generated from a high voltage terminal of the light source and arc noise generated from a low voltage terminal of the light source, and blocking the high voltage from being provided to the light source based on the detected arc noise detection voltage.
Abstract:
In a backlight unit and an LCD apparatus having the backlight unit, in which the backlight unit includes a plurality of lamps and an inverter, the inverter provides the lamps with current. The inverter reduces current provided to the lamps to turn off the lamps. Therefore, currents are gradually decreased to reduce noise generated by the transformer when the lamps are turned off.
Abstract:
A liquid crystal display apparatus includes a backlight assembly which includes a device for driving the backlight including a light emitting diode (“LED”) used as a light source, which has a high efficiency and a high reliability for controlling brightness of each color light. The driving device drives a first, second and third LED unit emitting a first, second and third light, respectively. The driving device includes a first driving part emitting the first light in response to a brightness control signal and outputting a reference control signal in response to a first brightness of the first light, a second driving part driving the second LED units generating the second light of which second brightness is controlled in response to the reference control signal, and a third driving part driving the third LED units generating the third light of which third brightness is controlled in response to the reference control signal.
Abstract:
In a backlight unit and an LCD apparatus having the backlight unit, in which the backlight unit includes a plurality of lamps and an inverter, the inverter provides the lamps with current. The inverter reduces current provided to the lamps to turn off the lamps. Therefore, currents are gradually decreased to reduce noise generated by the transformer when the lamps are turned off.
Abstract:
An apparatus of driving a lamp for a display device is provided. The driving apparatus includes an inverter (920), a lamp current sensor (940), and an inverter controller (930). The lamp current sensor (940)senses a current flowing in the lamp and output a feedback signal having a magnitude depending on the sensed current. The inverter controller (930) compares a dimming control signal from an external device with the feedback signal and controls the inverter (920) based on the comparison. The inverter (920) includes a transformer (T1) for applying a lamp drive voltage to a lamp for turning on or off the lamp and a voltage sensor (928) sensing the lamp drive voltage. The inverter (920) adjusts a turns ratio of the transformer in accordance with the sensed lamp drive voltage.
Abstract:
A planar light source device includes a light source body having at least one partition member in a space formed by first and second substrates, and at least one plasma container. Plasma is generated in a plurality of discharge regions that are connected to one another through the plasma container. The plasma container is disposed at a position adjacent to the partition member to receive a portion of the plasma. According to this configuration, distribution of the plasma in the discharge regions is uniform and luminance of the light generated from the planar light source device is uniform. As a result, the planar light source device implements a good display quality of the LCD apparatus.
Abstract:
In an eco-friendly method of recycling a fluorescent lamp capable of reducing energy consumption and a recycling apparatus for performing the recycling method, broken pieces of fluorescent lamps are heated at a temperature of about 100? to about 330? to form a gas containing a mercury vapor. The gas containing the mercury vapor is cooled at a temperature of about −38? to about 0? to form a liquid mercury. The liquid mercury is collected. Therefore, the broken pieces of the fluorescent lamps are heated at the temperature no higher than the boiling point of mercury so that an energy consumption and a size of the recycling apparatus are decreased, and a probability for the recycling apparatus to malfunction may also be decreased.
Abstract:
A backlight assembly apparatus, including a conductive receiving container, a flat fluorescent lamp provided over the conductive receiving container, and an insulating member positioned between the conductive receiving container and the flat fluorescent lamp to provide insulation.
Abstract:
An apparatus of driving a lamp for a display device is provided. The driving apparatus includes an inverter (920), a lamp current sensor (940), and an inverter controller (930). The lamp current sensor (940)senses a current flowing in the lamp and output a feedback signal having a magnitude depending on the sensed current. The inverter controller (930) compares a dimming control signal from an external device with the feedback signal and controls the inverter (920) based on the comparison. The inverter (920) includes a transformer (T1) for applying a lamp drive voltage to a lamp for turning on or off the lamp and a voltage sensor (928) sensing the lamp drive voltage. The inverter (920) adjusts a turns ratio of the transformer in accordance with the sensed lamp drive voltage.