摘要:
An ultrasound transceiver scans an organ and processes the echogenic signals to produce three-dimensional, two-dimensional, and one-dimensional information of the organ. The 3-D, 2-D, and 1-D information is utilized to determine the thickness, surface area, volume, and mass of the organ wall.
摘要:
An ultrasound transceiver scans a bladder in a three dimensional array to measure the thickness and surface area of the bladder to determine bladder mass. The bladder wall thickness and masses may be determined for anterior, posterior, and lateral locations of the bladder.
摘要:
Systems and methods for ultrasound imaging using an inertial reference unit are disclosed. In one embodiment, an ultrasound imaging system includes an ultrasound unit configured to ultrasonically scan at least one plane within a region of interest in a subject and generate imaging information from the scan. An inertial reference unit is provided that detects relative positions of the ultrasound unit as the ultrasound unit scans a plurality of plane. A processing unit is configured to receive the imaging information and the corresponding detected position and is operable to generate images of the region of interest.
摘要:
An ultrasound system and method to measure an organ wall weight and mass. When the organ is a bladder, a bladder weight (UEBW) is determined using three-dimensional ultrasound imaging that is acquired using a hand-held or machine controlled ultrasound transceiver. The infravesical region of the bladder is delineated on this 3D data set to enable the calculation of urine volume and the bladder surface area. The outer anterior wall of the bladder is delineated to enable the calculation of the bladder wall thickness (BWT). The UEBW is calculated as a product of the bladder surface area, the bladder wall thickness, and the bladder wall specific gravity.
摘要:
An ultrasound transceiver scans an organ and processes the echogenic signals to produce three-dimensional, two-dimensional, and one-dimensional information of the organ. The 3-D, 2-D, and 1-D information is utilized to determine the thickness, surface area, volume, and mass of the organ wall.
摘要:
Systems, methods, and ultrasound transceivers equipped and configured to execute analysis and extract ultrasound information related to an abdominal aortic aneurysm of a subject are described. The methods utilize algorithms to establish improved targeting of the abdominal aortic aneurysm within a region-of-interest. The targeting algorithms may be optimally applied to provide the user with real-time feedback and orientation guidance for positioning the transceiver. Additional methods utilize diameter conversion algorithms to establish the diameter of the abdominal aortic aneurysm based on conversion of the volume measurement and limited segmentation within a targeted region-of-interest of the aorta.
摘要:
Systems and methods for ultrasound imaging using an inertial reference unit are disclosed. In one embodiment, an ultrasound imaging system includes an ultrasound unit configured to ultrasonically scan at least one plane within a region of interest in a subject and generate imaging information from the scan. An inertial reference unit is provided that detects relative positions of the ultrasound unit as the ultrasound unit scans a plurality of plane. A processing unit is configured to receive the imaging information and the corresponding detected position and is operable to generate images of the region of interest.
摘要:
Ultrasound systems and methods are described to measure changes in cardiac chamber volumes and organ wall areas, thicknesses, volumes and masses between the cardiac chambers using computer readable media employing image processing algorithms applied to 3D data sets acquired at systole and diastole. The systems for cardiac imaging includes an ultrasound transceiver configured to sense the mitral valve of a heart by Doppler ultrasound, an electrocardiograph connected with a patient and synchronized with the transceiver to acquire ultrasound-based 3D data sets during systole and diastole at a transceiver location determined by Doppler ultrasound affected by the mitral valve, and a computer readable medium configurable to process ultrasound imaging information from the 3D data sets communicated from the transceiver.
摘要:
Systems, methods, and ultrasound transceivers equipped and configured to execute analysis and extract ultrasound information related to an abdominal aortic aneurysm of a subject are described. The methods utilize algorithms to establish improved targeting of the abdominal aortic aneurysm within a region-of-interest. The targeting algorithms may be optimally applied to provide the user with real-time feedback and orientation guidance for positioning the transceiver. Additional methods utilize diameter conversion algorithms to establish the diameter of the abdominal aortic aneurysm based on conversion of the volume measurement and limited segmentation within a targeted region-of-interest of the aorta.
摘要:
An ultrasound system and method to measure an organ wall weight and mass. When the organ is a bladder, a bladder weight (UEBW) is determined using three-dimensional ultrasound imaging that is acquired using a hand-held or machine controlled ultrasound transceiver. The infravesical region of the bladder is delineated on this 3D data set to enable the calculation of urine volume and the bladder surface area. The outer anterior wall of the bladder is delineated to enable the calculation of the bladder wall thickness (BWT). The UEBW is calculated as a product of the bladder surface area, the bladder wall thickness, and the bladder wall specific gravity.