摘要:
An apparatus and methods to quantify the volume of urine in a human bladder with a limited number of acoustic beams is disclosed. In a first version a plurality of narrow ultrasound beams is transmitted in different directions towards the bladder. Returning echoes are converted to digital form and stored in memory. A volume display on the apparatus allows to define the optimal apposition of the transducer assembly. Signal processing software automatically determines the bladder Depth D and Height H and computes the volume of urine. In a second version, a single wide angle ultrasound beam transducer transmits ultrasounds signals at a fundamental frequency to quantify the urine volume. Return signals originating from a depth beyond the usual position of the posterior wall depth of a filled bladder are analyzed for presence of higher harmonic signals, which in turn are related to the presence or absence of urine.
摘要:
Systems, methods, and ultrasound transceivers equipped and configured to execute analysis and extract ultrasound information related to an abdominal aortic aneurysm of a subject are described. The methods utilize algorithms to establish improved targeting of the abdominal aortic aneurysm within a region-of-interest. The targeting algorithms may be optimally applied to provide the user with real-time feedback and orientation guidance for positioning the transceiver. Additional methods utilize diameter conversion algorithms to establish the diameter of the abdominal aortic aneurysm based on conversion of the volume measurement and limited segmentation within a targeted region-of-interest of the aorta.
摘要:
Embodiments are described for a system and method to improve image clarity in ultrasound images that utilize an ultrasound transceiver receiving ultrasound energy returning from a targeted region of interest and producing a plurality of echoic signals. The region-of-interest may include an organ, an organ cavity, for example a bladder, or a portion of an organ or organ cavity. The echoic signals then receive signal processing via an executable algorithm configured to image the targeted region-of-interest from the echoic signals using at least one of a first harmonic, a second harmonic, and a fundamental frequency of the ultrasound energy. The algorithm generates a harmonic value that may then be plotted on a grid or render a map presentable on a computer display or other visual means. Alternate embodiments provide that the executable algorithm may be non-parametric and include a Harmonic Analysis Kernel (HAK). The HAK includes a window process, a Fast Fourier Transform process, an average process, a normalization of intensity process, a compensation by depth process, and a harmonic smoothing process to generate the harmonic values. A map of the harmonic values then may be coded, for example, by color-coding according to the magnitude of the harmonic value, to present an image of the region-of-interest.
摘要:
A hand-held 3D ultrasound instrument is disclosed which is used to non-invasively and automatically measure amniotic fluid volume in the uterus requiring a minimum of operator intervention. Using a 2D image-processing algorithm, the instrument gives automatic feedback to the user about where to acquire the 3D image set. The user acquires one or more 3D data sets covering all of the amniotic fluid in the uterus and this data is then processed using an optimized 3D algorithm to output the total amniotic fluid volume corrected for any fetal head brain volume contributions.
摘要:
Systems and methods for ultrasound imaging using an inertial reference unit are disclosed. In one embodiment, an ultrasound imaging system includes an ultrasound unit configured to ultrasonically scan at least one plane within a region of interest in a subject and generate imaging information from the scan. An inertial reference unit is provided that detects relative positions of the ultrasound unit as the ultrasound unit scans a plurality of plane. A processing unit is configured to receive the imaging information and the corresponding detected position and is operable to generate images of the region of interest.
摘要:
A hand-held 3D ultrasound instrument is disclosed which is used to non-d invasively and automatically measure amniotic fluid volume in the uterus requiring a minimum of operator intervention. Using a 2D image-processing algorithm, the instrument gives automatic feedback to the user about where to acquire the 3D image set. The user acquires one or more 3D data sets covering all of the amniotic fluid in the uterus and this data is then processed using an optimized 3D algorithm to output the total amniotic fluid volume corrected for any fetal head brain volume contributions.
摘要:
Ultrasound systems and methods are described to measure changes in cardiac chamber volumes and organ wall areas, thicknesses, volumes and masses between the cardiac chambers using computer readable media employing image processing algorithms applied to 3D data sets acquired at systole and diastole. The systems for cardiac imaging includes an ultrasound transceiver configured to sense the mitral valve of a heart by Doppler ultrasound, an electrocardiograph connected with a patient and synchronized with the transceiver to acquire ultrasound-based 3D data sets during systole and diastole at a transceiver location determined by Doppler ultrasound affected by the mitral valve, and a computer readable medium configurable to process ultrasound imaging information from the 3D data sets communicated from the transceiver.
摘要:
An apparatus and methods to quantify the volume of urine in a human bladder with a limited number of acoustic beams is disclosed. In a first version the apparatus is composed of a transducers assembly that transmits a plurality of narrow ultrasound beams in different directions towards the bladder and receives the returning ultrasound signals; a receiver detector for processing the returned signals; an analog-to-digital converter; a memory to store the digitized data and a volume display allowing to define the optimal position of the transducer assembly. The apparatus also includes a signal processing software that automatically determines the bladder Depth D and Height H and computes the volume of urine using an empirical formula corrected by specific, empirically measured, filling dependant correction factors. In a second version a single wide angle ultrasound beam transducer transmitting ultrasound signals at fundamental frequency is used to quantify the urine volume. Return signals originating from a depth beyond the usual position of the posterior wall depth of a filled bladder are analyzed for presence of higher harmonic signals which in turn are related to presence or absence of urine. Both methods or a combination thereof can be used us a simple warning device for presence of residual urine after voiding or indicate the presence of a critical bladder urine filling level.
摘要:
A hand-held 3D ultrasound instrument is disclosed which is used to non-invasively and automatically measure amniotic fluid volume in the uterus requiring a minimum of operator intervention. Using a 2D image-processing algorithm, the instrument gives automatic feedback to the user about where to acquire the 3D image set. The user acquires one or more 3D data sets covering all of the amniotic fluid in the uterus and this data is then processed using an optimized 3D algorithm to output the total amniotic fluid volume corrected for any fetal head brain volume contributions.
摘要:
Systems and methods are described for acquiring, processing, and presenting boundaries of a cavity-tissue interface within a region-of-interest in an ultrasound image based upon the strength of signals of ultrasound echoes returning from structures within the region-of-interest. The segmentation of boundaries of cavity shapes occupying the region-of-interest utilizes cost function analysis of pixel sets occupying the cavity-tissue interface. The segmented shapes are further image processed to determine areas and volumes of the organ or structure containing the cavity within the region-of-interest.