Abstract:
A liquid crystal display includes a display area that can be seen by a user, and a peripheral area external to the display area. The display area and the peripheral area are provided with pixel electrodes including transparent electrodes and reflective electrodes. The reflective electrodes on the display area have holes exposing the transparent electrodes, while the reflective electrodes on the peripheral area have no hole.
Abstract:
In an LCD for enhancing a reflection ratio, a second substrate faces the first substrate on which a pixel array is formed, a liquid crystal layer is interposed between the first and second substrates, an insulating layer on the first substrate includes first regions and second regions, where each of the second regions has a height difference relative to each of first regions, a base line of a first region forms an angle from about 5 to about 15 degrees with respect to a tangent line of a second region, an embossing pattern with a uniform and low stepped portion is formed by regulating an exposure amount applied to the organic insulating layer so that a reflection ratio is maximized and a distribution of the slopes of an embossing pattern is uniform, and the reflection ratio is enhanced in a specific direction by forming the embossing pattern with an asymmetric profile.
Abstract:
In an array substrate and an LCD apparatus having the same, the array substrate includes a signal line, a first insulating layer formed on the signal line, and a pixel electrode formed on the first insulating layer and overlapped with the signal line. The pixel electrode is electrically connected with the signal line so as to discharge a signal through the signal line. A second insulating layer is disposed between the pixel electrode and the first insulating layer, and includes an opening formed in an overlapped area of the pixel electrode and the signal line so as to partially expose the first insulating layer. Thus, the LCD apparatus may have an enhanced display quality.
Abstract:
A thin film transistor array panel is provided, which includes a substrate including a display region, a chip region, and a pad region; a plurality of signal lines formed on the substrate for electrically connecting the pad region to the chip region and the display region, wherein the signal lines have pads as an end portion and the pads are formed in the pad region; an insulating layer covering the signal lines and having a plurality of contact holes exposing the portions of the signal lines; a plurality of contact assistants formed on the insulating layer and connected to the pads through the contact holes; and a plurality of connection member respectively connected to the contact assistants and formed on the insulating layer for selectively electrically connecting the signal lines, wherein the insulating layer has a boundary line formed by etching, and the boundary line is crenellated.
Abstract:
In an LCD for enhancing a reflection ratio, a second substrate faces the first substrate on which a pixel array is formed, a liquid crystal layer is interposed between the first and second substrates, an insulating layer on the first substrate includes first regions and second regions, where each of the second regions has a height difference relative to each of first regions, a base line of a first region forms an angle from about 5 to about 15 degrees with respect to a tangent line of a second region, an embossing pattern with a uniform and low stepped portion is formed by regulating an exposure amount applied to the organic insulating layer so that a reflection ratio is maximized and a distribution of the slopes of an embossing pattern is uniform, and the reflection ratio is enhanced in a specific direction by forming the embossing pattern with an asymmetric profile.
Abstract:
In an LCD for enhancing a reflection ratio, a second substrate faces the first substrate on which a pixel array is formed, a liquid crystal layer is interposed between the first and second substrates, an insulating layer on the first substrate includes first regions and second regions, where each of the second regions has a height difference relative to each of first regions, a base line of a first region forms an angle from about 5 to about 15 degrees with respect to a tangent line of a second region, an embossing pattern with a uniform and low stepped portion is formed by regulating an exposure amount applied to the organic insulating layer so that a reflection ratio is maximized and a distribution of the slopes of an embossing pattern is uniform, and the reflection ratio is enhanced in a specific direction by forming the embossing pattern with an asymmetric profile.
Abstract:
In an array substrate and an LCD apparatus having the same, the array substrate includes a signal line, a first insulating layer formed on the signal line, and a pixel electrode formed on the first insulating layer and overlapped with the signal line. The pixel electrode is electrically connected with the signal line so as to discharge a signal through the signal line. A second insulating layer is disposed between the pixel electrode and the first insulating layer, and includes an opening formed in an overlapped area of the pixel electrode and the signal line so as to partially expose the first insulating layer. Thus, the LCD apparatus may have an enhanced display quality.
Abstract:
A liquid crystal display includes a display area that can be seen by a user, and a peripheral area external to the display area. The display area and the peripheral area are provided with pixel electrodes including transparent electrodes and reflective electrodes. The reflective electrodes on the display area have holes exposing the transparent electrodes, while the reflective electrodes on the peripheral area have no hole.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes a substrate, a plurality of pixels arranged in a matrix on the substrate where each pixel includes a switching element, a plurality of gate lines that are connected to the switching elements and extend in a row direction, and a gate driver that is connected to the gate lines and is formed on the substrate as an integrated circuit. In the liquid crystal display, the gate driver includes a first region and a second region that is not aligned with the first region.
Abstract:
A liquid crystal display apparatus includes a lower substrate, an upper substrate and a liquid crystal layer interposed between the lower substrate and the upper substrate. The lower substrate includes a display part for displaying image and a driving part for providing the display part with a driving signal. The upper substrate includes a common electrode and an insulating member that electrically insulates the common electrode from the driving part. The insulating member has a lower dielectric constant than the liquid crystal layer. Thus, a parasitic capacitance between the driving part and the common electrode is reduced to prevent malfunction of the driving part, and a display quality is enhanced.