摘要:
An improvement to a continuous solvent extraction-steam-distillation process for the recovery of aromatic hydrocarbons in the range of C.sub.6 -C.sub.16 from a feed stream containing such aromatics and aliphatic hydrocarbons in the range of C.sub.5 -C.sub.16 which resides in using two extractive distillation zones thermally linked to recover heat and solvent, thereby resulting in a heat savings.
摘要:
An improvement to a continuous solvent extraction-steam distillation process for the recovery of aromatic hydrocarbons in the range of C.sub.6 -C.sub.16 from a feed stream containing such aromatics and aliphatic hydrocarbons in the range of C.sub.5 -C.sub.16 which resides in utilizing two heat exchangers wherein the heat of condensation of the overhead stripper vapor and vapor sidedraw products is recovered and utilized to vaporize the stripping water, thereby producing stripping steam which in turn is compressed up to the pressure present at the bottom of the stripper and resulting in the reduction of the heat load of the process.
摘要:
In a solvent extraction/steam distillation process for the recovery of aromatic hydrocarbons wherein stripping water is obtained from the distillation column, the improvement comprising(a) dividing the stripping water into two streams;(b) passing one stream to a motive steam generator wherein the stripping water is vaporized and passed to a steam ejector;(c) passing the other stream to a heat exchanger wherein the stripping water is vaporized by lean solvent from the distillation column, the lean solvent is cooled, and the stripping water vapor passes to the steam ejector;(d) passing the stripping water vapor from steps (b) and (c) to the distillation column; and(e) passing the lean solvent from step (c) to the extractor.
摘要:
In a combination solvent extraction-steam distillation process for the recovery of aromatic hydrocarbons, the improvement comprising(a) introducing high pressure steam into a steam ejector;(b) passing the steam from step (a) to a first heat exchanger where it exchanges heat with cooler lean solvent coming from the bottom of the distillation column and is condensed;(c) returning the lean solvent from step (b) to the bottom of the distillation column;(d) passing part of the condensate from step (b) to a second heat exchanger where it exchanges heat with the warmer lean solvent coming from the bottom of the distillation column, cooling the lean solvent and vaporizing the condensate; and(e) passing the vapor from step (d) to the steam ejector in step (a).
摘要:
In a steam distillation process for the recovery of aromatic hydrocarbons wherein there is (i) a primary flash zone at the top of the distillation zone in which rich solvent is flashed and/or (ii) provision for the removal of side cut distillate vapors from about the middle of the distillation zone, the improvement comprising (a) heat exchanging flashed rich solvent vapors or side-cut distillate vapors with stripping water to provide stripping water vapors and stripping water at at least about the boiling point of water; (b) passing the stripping water vapors from step (a) to a steam ejector; (c) passing the stripping water from step (a) to a motive steam generator wherein the stripping water is vaporized under pressure; (d) passing the stripping water vapors from step (c) to the steam ejector referred to in step (b); and (e) passing the stripping water vapors, introduced into the steam ejector in accordance with steps (b) and (d), to the lower half of the distillation zone.
摘要:
A liquid-liquid contacting tray comprising a perforated deck providing a major portion of the tray surface area and continuous phase liquid transfer means comprising a settling section extending outwardly from the tray deck on one side of the tray and joined in closed flow communication with a smaller cross-sectioned pressure drop section extending outwardly from the tray deck on the other side of the tray to provide a sudden contraction in cross-sectional area from the settling section to said pressure drop section substantially in the plane of the perforated deck for reduction of pressure in the liquid flowed therethrough.
摘要:
A continuous solvent extraction process for the separation of aromatic hydrocarbons from a feedstock comprising aromatic and non-aromatic hydrocarbons provides more efficient heat utilization by using a lean solvent stream to heat the rich solvent stream as it passes from a primarily extractive stripping section to a section that primarily provides steam stripping. The feed stream is contacted with a lean solvent stream in an extraction zone to separate it into a raffinate stream comprising non-aromatic hydrocarbons and a first rich solvent stream comprising solvent, aromatic hydrocarbons and non-aromatic hydrocarbons. The first rich solvent stream passes to a first stripping zone section from which a first vapor stream is recovered and a second rich solvent stream is discharged. As the second rich solvent stream is passed to a second section of the stripping zone it is heated by heat exchange with the lean solvent stream that is recovered from the second stripping zone section. Heat exchange of the rich solvent with the lean solvent between stripping sections removes substantially more heat from the lean solvent stream than was previously removed when the lean solvent stream was used to heat stripping steam. The additional heat made available by this invention reduces the overall heat input and permits the use of low pressure steam to heat the stripping stream.
摘要:
An absorbent composition for the removal of acid gases, such as CO2, H2S and COS, from gas streams is provided. The absorbent composition comprises an aqueous solution comprising: 1) greater than 1 mole piperazine per liter of aqueous solution; and 2) about 1.5 to about 6 moles methyldiethanolamine per liter of aqueous solution.
摘要:
The invention relates to a process for separating aromatic hydrocarbons from a mixed hydrocarbon feed employing a selective solvent which exhibits a low critical solution temperature of the solvent with a solute. The mixed hydrocarbon feed is passed to an extraction zone wherein the feed is contacted with a lean solvent to provide a raffinate stream comprising non-aromatics and a rich solvent stream comprising aromatics and solvent. Both the raffinate stream and the rich solvent stream are admixed with a sufficient amount of a solute at a temperature which is at or below a low critical solution temperature with the solvent to separate the raffinate and aromatic phases from the solvent/solute mixture. The solvent/solute mixture is heated to a separation temperature which is above the low critical solution temperature to provide a solvent phase which is essentially free of solute at energy levels significantly lower than conventional processes.
摘要:
In a combined solvent extraction/steam distillation process for the separation of aromatic hydrocarbons from a mixture of aromatic and non-aromatic hydrocarbons, there are three major thermal and material cycles: the solvent cycle, the hydrocarbon cycle, and the water cycle. The process is improved by redistributing the energy use between the three cycles to minimize the internal recycle within the process and to reduce the overall energy requirements. One means of the redistribution includes cooling of a lean solvent stream with liquid in a recovery or stripping column. Cooling of the lean solvent reduces flashing within an extract column and the resulting reflux of hydrocarbons to the extract column.