摘要:
A battery charging system (10) includes a charging path (50) for charging batteries (14) which have a variety of different charging parameters requiring different optimum charging algorithms (58). The battery charging system (10) comprises a charging algorithm sensing circuit (30). At least one battery cell (14A, 14B) having a positive (23) and a negative terminal (27) and an optimum charging algorithm is to be charged. An impedance (R18) having two terminals and a value related to a predetermined charging algorithm of the cell approximating the optimum charging algorithm is coupled to one of the positive or negative terminals of the battery cell (14B). A capacitor (C72) combines with the impedance (R18) to form a characteristic related to the predetermined charging algorithm. Battery terminals (23 and 27) connected to the cell (14A and 14B) and to one of the terminals of the impedance (R18) form a battery (12) for connecting the cell (14A-B) into the battery charging system (10) with the cell (14A-B) in the charging path (50), and the impedance (R18) and the capacitor (C72) in the charging algorithm sensing circuit.
摘要:
A battery charging system (200) comprises a battery pack (206) and charger (202). Battery pack 206 includes a thermistor (212) for determining the temperature of battery pack (206) and a zener diode (210)in parallel with the thermistor (212) for informing charger (202) of the current capacity of battery (206) or of another battery parameter. Charger (202) includes a transistor (220) and zener diode (214) for effectively switching between measuring thermistor (212) and zener diode (210) at charger input terminal (224). This effectively reduces the number of battery and charger contacts required to measure two battery parameters as compared to the prior art.
摘要:
A battery charger (102) includes an input terminal (124) for receiving control signals from radio (104). The control signals are received by a charge controller (112) which provides a charge rate to radio battery pack (106) which is a function of the control signal. Radio (104) includes a controller (126) which can sense the state of the radio battery pack (106), as well as changes in the state of radio (104). Controller (126) can then modify the control signal sent to charger (102) and therefor the battery charge rate proved by charger (102) based on certain changes in the state of battery pack (106) or radio (104).
摘要:
A battery charging system includes a battery pack (106) and charger (102). Battery pack (106) includes a selectable magnetic field generator (202) which is activated by radio controller (206) when radio (104) changes states. A Hall-effect switch (204) located in either charger (102) or battery (106) receives the magnetic field and informs charger monitor circuit (128) that radio (104) has changed states. This allows for charger (102) to modify the amount of current being provided to radio (104) via line (129). In a second embodiment, an infrared source (402) and an infrared detector (404) are used in place of selectable magnetic field generator (202) and Hall-effect switch (204).
摘要:
A battery charging system (200) includes a field-effect transistor (212) as a current discharge protection device in order to prevent current from flowing from battery (222) to charger (202) when charger (202) is not charging or discharging battery (222). The field-effect transistor (212) also protects battery (222) in the case that the battery contacts are inadvertently shorted. When charger (202) is charging battery (222), field-effect transistor (212) is turned on, providing for reduced voltage drop across the device due to its low on resistance, and also allows for charger (202) to charge and discharge (condition) battery (222).
摘要:
A switch assembly (100) includes a key area (104) and a light reception section (114) for receiving light from input lightpipe (106) and providing some of the light to key area (104). Switch assembly (100) further includes an output lightpipe (122) and an optical conversion section (116) for modifying the light which is received by output lightpipe (122) when key area (104) is activated.
摘要:
A microphone assembly (134) includes a movable diaphragm (124) and a linear light gradient (130) which causes the movement of diaphragm (124) to be translated into a corresponding amplitude of light to be received at a photo-detector (116). Thereby providing for a fully optical microphone assembly which is immune to radio frequency interference and resistance losses.
摘要:
A vehicular battery operated charger (202) for charging an electronic device such as a radio (204) includes a controller (218). Controller (218) determines the battery voltage of the vehicles battery (222) and compares it to a threshold level stored in controller (218). Charger (202) will automatically charge radio battery (206) as long as the voltage level of the vehicles battery (222) does not drop below the threshold level stored in controller (218).
摘要:
A device (111) for simulating a high battery temperature used in charging a rechargeable cell (101). The device takes advantage of a control signal generated by a voltage control circuit (103) used to disconnect a rechargeable cell (101) from a charging system (105) when a predetermined voltage is reached. The device (111) is generally used with cells having a lithium based chemistry and requiring a different charging regime then nickel chemistry cells. The device (111) is activated by the control signal from control circuit (103) which detects a predetermined voltage from rechargeable cell (101) enabling thermistor (113) to change its state. This change is detected by the charging system (105) which alters its mode of operation from a rapid charging rate to a slower charging rate. The device is retrofitable to existing rechargeable batteries allowing them to be charged using existing charging systems alien to the rechargeable battery.
摘要:
A battery pack (10) includes at least one battery cell (16) and a current interrupt device (18) adapted to protect said cells from damage during charging or discharge. The battery pack (10) is further adapted to be recharged at extremely fast recharge rates via the use of a bypass switch (20) which allows current to be diverted around current interrupt device (18) during recharge. The bypass switch (20) is controlled by a control circuit (22) which provides a control signal and response to sensing a charge current.